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Numerous studies have explored software defect prediction using machine learning
algorithms; however, their performance on publicly available defect datasets often remains
limited due to high feature dimensionality and class imbalance. This study addresses these
issues using five AEEEM project datasets; namely, Eclipse Equinox (EQ), JDT, Apache Lucene
(LC), Mylyn (ML), and PDE Ul. Seven ensemble learning algorithms (AdaBoost, Gradient
Boosting, XGBoost, Random Forest, Extra Trees (ET), Bagging, and Stacking) were
implemented. To reduce dimensionality, three feature selection techniques, namely,
Correlation-Based Feature Selection (CFS), Sequential Forward Selection (SFS), and
Correlation-based Filter (CO), were applied, while the Synthetic Minority Oversampling
Technique (SMOTE) method was employed to handle class imbalance. Experiments were
conducted using 10-fold and nested cross-validation, and model performance was evaluated
using accuracy, recall, precision, F-measure, and Area under ROC curve (AUC) metrics. The
combination of CO feature selection with the ET ensemble algorithm outperformed all other
models across the five datasets. Using nested cross-validation with grid search optimization,
accuracies of 92.1, 97.3, 99.1, 98.2, and 98.5 % were achieved for the EQ, JDT, LC, ML, and
PDE datasets, respectively. These findings demonstrate that integrating effective feature
selection and data balancing significantly enhances defect prediction performance compared
to models using default hyper-parameters.

1. Introduction

Software is a crucial technology used to solve
societal problems across various domains of life. It is
developed using  different  frameworks and
programming languages. The software development
process must be carefully controlled and monitored to
ensure the production of high-quality software at an
optimal cost. It is also essential to follow Software
Quality Assurance practices such as code walkthroughs,
software testing, code inspections, and software defect
prediction (Adrion et al., 1982; Johnson & Malek, 1988;
Rathore & Kumar, 2019) to achieve this goal.
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Software companies and developers continue to face
challenges in producing quality software due to the
presence of defects throughout the development
process. A software defect is an error, flaw, fault, or bug
embedded in the requirements, design, or source code.
These challenges negatively affect the functionality of
the developed software and the experience of users
interacting with the product. The problem also extends
to the testing phase, where defects identified later in the
cycle can significantly impact software quality,
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reliability, and maintenance cost (Rawat & Dubey,
2012).

As software systems become increasingly complex
and large, controlling, managing, fixing, reducing, and
testing defects becomes more difficult (Alsawalgah et
al., 2020). Therefore, attempting to control defects at
any phase of the software development life cycle
(SDLC), or detecting them early, helps developers,
testers, and software companies deliver high-quality
software (Rawat & Dubey, 2012). Software fault
prediction, as stated by Alsawalgah et al. (2020) and
Mehta & Patnaik (2021), is one of the most widely used
approaches to reduce software development and
maintenance costs during the testing phase of the SDLC.
It is a technique designed to enhance software quality
and efficiency by enabling timely detection of fault-
prone modules before the actual testing process takes
place (Rawat & Dubey, 2012; Alsawalgah et al., 2020).
Therefore, to produce quality software, early detection
of defects is essential before the testing phase begins.
Software bug prediction approaches or models play a
crucial role in this regard by classifying software
modules into defective and non-defective categories.

Software metrics are also used to quantitatively
describe the properties of specific software modules,
thereby helping to identify defective software (Shatnawi
& Li, 2008; Choudhary et al., 2018). Several researchers
have investigated different approaches for building and
evaluating software fault prediction models. These
approaches include binary classification of faults (Li &
Reformat, 2007; Mendes-Moreira et al., 2012;
Vandecruys et al.,, 2008; Rathore & Kumar, 2019;
Alsawalqah et al., 2020), bug or fault density prediction
(Rathore & Kumar, 2019; Rathore & Kumar, 2016), and
bug severity prediction (Sandhu et al., 2011; Shatnawi
& Li, 2008). However, the most commonly
implemented prediction scheme is binary classification,
in which software modules are categorized as faulty or
non-faulty.

Supervised learning approaches have also been
widely used for defect prediction, including ensemble
methods (Huda et al., 2018; Jiang et al., 2008), Decision
Trees (Koprinska et al.,, 2007), Support Vector
Machines (Elish & Elish, 2008), Naive Bayes (Menzies
et al., 2007), Random Forest, Neural Networks, and
Logistic Regression. In addition, unsupervised
techniques such as fuzzy clustering (Yuan et al., 2002)
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and K-means clustering have been examined for bug
prediction. Semi-supervised methods, such as
Expectation Maximization (Seliya & Khoshgoftaar,
2007), have also been explored.

The performance of all the above approaches
generally remains below 90% accuracy (Alsawalgah et
al., 2020; Rathore & Kumar, 2019; Zhou et al., 2019).
However, reviews of recent studies in software fault
prediction show that ensemble learning methods are
more effective and achieve better predictive
performance (Aljamaan & Alazba, 2020; Matloob et al.,
2021). Alsawalgah et al. (2017) conducted experiments
using supervised ensemble classifiers such as Random
Forest, Bagging, and AdaBoost, along with base
classifiers including Multilayer Perceptron (MLP), C4.5
Decision Trees, and Naive Bayes (NB), on NASA and
PROMISE project datasets. Their findings indicated
that AdaBoost combined with C4.5 Decision Trees
outperformed the other models. Similarly, Zhou et al.
(2019) applied supervised ensemble and deep learning
approaches, including Cascade Deep Forest (DPDF), a
hybrid ensemble and deep learning method, on 25
software projects from the NASA, PROMISE, AEEEM,
and Relink datasets. Their results showed that DPDF
achieved superior performance compared to other
models.

Aljamaan & Alazba (2020) evaluated supervised
ensemble classifiers such as Random Forest (RF), Extra
Trees (ET), Adaptive Boosting (AdaBoost), Categorical
Boosting (CatBoost), Extreme Gradient Boosting
(XGBoost), Gradient Boosting (GB), and Histogram-
Based Gradient Boosting (HGB) on NASA project
datasets, finding that RF and ET outperformed the rest.
Mehta (2021) applied several ensemble learning
methods, including RF, ET, AdaBoost, Stacking,
XGBoost, and Bagging, on NASA software project
datasets, with XGBoost and Stacking achieving the best

performance.
Generally, ensemble model offers improved
predictive performance, enhanced stability and

robustness, less overfitting, better handling of complex
data, leveraging model diversity and flexibility.
Mohammed & Kora (2023) assured that ensemble
approach offers a state-of-the-art method and can bypass
of the limitations in using a single model. Ensembles
often achieve better accuracy in predictions as they
combine multiple models. They are also less sensitive to
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outliers and noisy data leading to more consistent and
reliable performance across different datasets.
Combining diverse models helps to reduce the overall
variance because of errors from model complexity as
well as bias due to simplistic models making it less
prone to overfitting the training data giving better
generalization capability to new, unseen data
(Mohammed & Kora, 2023). The rationale for using
ensembles is their property of combining diverse base
learners of different algorithms having different
strengths and weaknesses on different training data
obtained  through adjusting  weights thereby
compensating each other's limitations to result in
stronger overall predictive performance and better
generalization.

The performance of the machine learning algorithms
implemented by Balogun et al. (2020a) and Zhou et al.
(2019) on the AEEEM software defect datasets was
relatively low. For example, the study by Zhou et al.
(2019) on software defect prediction using the Deep
Forest (DPDF) model reported low accuracy due to high
feature dimensionality and class imbalance. Feature
selection technique can solve this problem by
identifying most relevant set of features. Class
balancing technique can also be used to remove class
imbalance problem. However, software defect datasets
are impacted by high feature dimensionality. The
techniques of identifying best set of features resulting
correct prediction were not extensively covered.
Moreover, class balancing techniques to solve a biased
classification problem well were not explored more.
This research work proposes software defect prediction
approaches that implement different ensemble
algorithms with various base classifiers. The attempt is
to increase the performance of prediction methods with
SMOTE class balancing methods and extensive features
selection mechanisms as preprocessing activity on
AEEEM project datasets of software module’s defect.

Therefore, this research is conducted to come up with
a prediction model while selecting determinant
attributes as well as finding effective ensemble learning
algorithms through reducing bias and avoiding
unbalanced classes. Hyper-parameter tuning was also
done to get reliable and generalizable findings.
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2. Materials and Methods
2.1 Data source and dataset description

Publicly available online datasets of AEEEM
projects, gathered from different versions of software
systems such as Eclipse and Apache and collected by
D’Ambros et al. (2010), have been widely used in
software defect prediction research (Balogun et al.,
2020b; Zhou et al., 2019; You et al., 2016). The AEEEM
dataset contains five software projects, and each project
dataset includes a total of 62 attributes: one dependent
(defect-proneness) attribute and 61 independent
software metric attributes. These metrics are derived
from a combination of CK (Chidamber and Kemerer)
and object-oriented (OO) metrics, previous defect
metrics, entropy of change metrics, churn-based source
code metrics, and entropy of source code metrics
(D’ Ambros et al., 2010).

The CK_OO metric group consists of six CK metrics
and eleven OO metrics, making a total of 17 metrics.
The Previous Defects Metrics group contains five
indicators of historical defect occurrences used to
predict future defects: all bugs, non-trivial bugs
(severity > trivial), major bugs (severity > major),
critical bugs (critical or blocker), and high-priority bugs.
The Entropy of Change Metrics group includes five
measures that quantify the complexity of code changes
across time. The Churn of Source Code Metrics group
consists of code churn measures calculated using
weighted churn deltas instead of simple lines-of-code
churn. This group, known as Weighted Churn Metrics
(WCHU), also contains 17 metrics. The Entropy of
Source Code Metrics group computes entropy values
directly from source code metrics rather than from
change information, represented as Linearly Decayed
Entropy metrics (LDHH), totaling another 17 metrics.

Each AEEEM project was developed for different
purposes. Eclipse Equinox (EQ) is an implementation of
the OSGi framework specification and provides core
services and infrastructure for executing OSGi-based
systems. JDT Core is used to support Java infrastructure
within the Eclipse IDE, including the Java compiler,
formatter, code assistance, and navigation support.
Apache Lucene (LC) is a high-performance Java-based
search engine library that provides full-text search, spell
correction, structured search, and nearest-neighbor
search capabilities. Mylyn (ML) is an Eclipse
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framework for task management and application
lifecycle support, offering a task-focused interface and
ALM integration tools. Finally, PDE Ul is the Eclipse
user interface framework used for developing, testing,
debugging, and deploying Eclipse plug-ins. It includes
OSGi tooling and provides project creation wizards,
editors, launchers, conversion tools, user assistance
tools, and integration with JDT.

Table 1 presents the detail description of AEEEM
datasets of the five software projects with their number
of attributes, number of modules (instances),
programming language developed, number of defective
and percentage of defective modules.

Table 1: Datasets of AEEEM projects developed with
Java programming language and 61 features

AEEEM  Neof

project instances . % of

purpose (Software Defective defective
modules)

EQ 324 129 39.80

JDT 997 206 20.70

LC 691 64 9.30

ML 1862 245 13.20

PDE 1497 209 13.96

Total 5371 853 15.90

2.2 The proposed software defect prediction

architecture

The proposed software defect prediction (SDP)
architecture is designed to classify software modules
into defective and non-defective categories using
ensemble machine learning algorithms. As shown in
Figure 1, the architecture integrates multiple techniques
that support experimental framework of the SDP model.
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Figure 1: General architecture of Software defect prediction
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The preprocessing phase includes data cleaning, data
normalization using the Z-score method, dimensionality
reduction through Correlation-Based Feature Selection
(CFS), Sequential Forward Selection (SFS), and
Correlation Filtering (CO), as well as data class
balancing using the Synthetic Minority Oversampling
Technique (SMOTE). CFS and CO are categorized
under filtering methods while SFS is among wrapper
methods used in data preprocessing steps of machine
learning classifier. Hence, SFS was used with all the
selected ensemble learning algorithms as well as with
other selected base classifier in the study. CO feature
selection technique uses brute force methods which can
be implemented in terms of different threshold (0.7, 0.8,
and 0.9) points which are experimented to extract
substantial features. Feature selection techniques were
applied to choose relevant set of attributes for enhancing
prediction power of classifier algorithms and to
minimize over fitting.

Ensemble learning algorithms such as AdaBoost,
GB, XGBoost, RF, ET, Bagging, and Stacking are
employed in the study. Furthermore, base classifiers
including Support Vector Machine (SVM), Naive
Bayes, Decision Tree, and K-Nearest Neighbor (KNN)
are utilized. All the ensemble and base learning
algorithms mentioned above are used to construct
predictive models capable of identifying and classifying
software modules as defective or non-defective.

The predictive performance of each model is
assessed using standard performance evaluation
metrics, namely, accuracy, recall, precision, F-measure,
and Area under ROC curve (AUC) and the model
demonstrating the highest accuracy and generalization
capability was declared as the optimal one.
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2.3 Hyper-performance optimization

Hyper-parameter tuning is the process of searching
for and identifying the optimal parameter values of
machine learning models to enhance their performance.
Various hyper-parameter optimization techniques exist,
including grid search, random search, genetic
algorithms, and differential evolution. In software
defect prediction, grid search, which systematically
explores all possible combinations of parameter values
within a defined search space, is often used (Mohammed
& Kora, 2023). The search space consists of a set of
hyper-parameters and their corresponding candidate
values. For each combination, the grid search algorithm
builds and evaluates a model, and the hyper-parameter
values that yield the best-performing model are returned
as the optimal settings. In this study, the hyper-
parameters summarized in Table 2 were applied across
the five datasets to obtain reliable and generalizable
results.

3. Results and Discussion
3.1 Data preprocessing

All selected dataset features were normalized within
the range of —3.00 to 3.00. As shown in Table 3,
increasing the number of threshold points positively
affected the model performance. The table summarizes
the number of attributes selected by various feature
selection methods. The datasets employed in this study
suffer from class imbalance, causing the majority class
to dominate the minority class during the machine
learning training process. To address this issue, SMOTE
was implemented to balance the dataset by
oversampling the minority class instances.

Table 2: Hyper-parameters used for best performance ensemble learning (ET Approach)

Hyper-parameter Description value Optimized value
name range

n_estimators Number of trees in the forest [10,50,200,300,400]
max_depth Maximum depth of the tree. [70,80,90]
min_samples_leaf ~ Minimum number of samples at a leaf node [0.0001,1, 2] ['gini',
criterion Measure the quality of a split. ['gini', 'entropy']

max_features
min_samples_split

max number of features used for splitting a node
Minimum number of samples before the node is split

['auto’, 'sqrt','log2’]
[2,3,5]
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Table 3: The number of selected attributes for each algorithms in model building

Datasets CFES CO (threshold) Ensemble learning algorithm

0.7 08 09 RF ET GB XGBoost BET AE SDF
EQ 17 14 26 39 11 7 47 7 16 7 9
DT 12 16 27 45 31 5 50 12 23 26 6
LC 7 26 34 47 9 15 19 9 10 6 23
ML 16 24 34 47 34 26 47 18 14 38 15
PDE 15 20 28 45 11 20 30 16 13 28 15

BET: Bagging with Extra tree base learner, AET:

Adaptive boosting with Extra tree base learner,

SDF: Stacking by default final Meta learner with base weak learner (ET, RF and DT)

Figure 2 shows the sizes of both defective and non-
defective classes for each of the five datasets, before and
after data balancing. Before balancing, the dataset
contained 4,518 non-defective and 853 defective
modules, making a total of 5,371 instances. After
applying the balancing technique, the total number of
instances increased to 9,036, consisting of 4,518 non-
defective and 4,518 defective modules. Specifically, the
datasets EQ, JDT, LC, ML, and PDE contained 324,
791, 627, 1,617, and 1,288 non-defective modules,

respectively, along with 129, 206, 64, 245, and 209
defective modules before balancing. After balancing,
each dataset contained an equal number of defective and
non-defective modules.

3.2 Performance prediction of the ensemble
learning algorithms
The experimental results of the selected ensemble
learning algorithms with the implementation of the
feature selection techniques are depicted in Table 4.

10000 -
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8000 A BEQ DT
7000 - Lc ML
mPDE ETOTAL
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(5]
N
‘»> 5000 -
a
S 4000 H
@)
3000
2000 -
1000 -
O __-—-L-
Defect Before Non-Defect Defectand Defect After Non-Defect Defect and
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Balancing Balancing

Dataset class types

Figure 2: Size and class categories of datasets before and after balancing using SMOTE
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Table 4: Accuracy result of the ensemble learning algorithms with the feature selection techniques

Algorithm Datasets ~ CFS CO (threshold) SFS
0.7 08 09

EQ 0903 0915 0915 0913 0944

DT 0927 0946 0961 0959  0.961

Random Forest LC 0918 0978 098 0984  0.980
(RF) ML 0927 0972 0976 0975 0.975
PDE 0949 0966 0971 0975 0.963

EQ 089 0905 0931 0915 0936

DT 0937 0958 0963 097  0.963

Extra Tree (ET) LC 0927 0994 0992 0989  0.988
ML 093 0977 0982 0982 0.982

PDE 0952 0972 0978 0982 0.974

EQ 0.897 0879 091 091 0923

, _ DT 0.894 0922 0936 0947 0.951
Gradient Boosting | 0.887 0979 0975 0976  0.961
(GB) ML 0.867 0925 0935 0939 0.932
PDE 0.847 0923 0926 0937 0932

EQ 0905 0923 0908 0905 0928

Extreme Gradient JDT 0.924 0955 0.965 0.967 0.963
Boosting LC 091 0982 0982 0979 0978
(XGBoost) ML 0921 0973 0973 0976 0.972
PDE 0929 0965 097 097 097

EQ 0.887 0903 0913 0918 0928

, DT 0934 0948 096 0965 0.958
i:?r?e”r‘g Of ETbase | 0919 099 099 0987 0977
ML 0926 0975 0981 0981 0.975

PDE 0946 0969 0978 098  0.969

EQ 0.882 0903 0918 0918 0954

DT 093 0958 0965 0966 0.966

ﬁa‘ia::g;’rs;e‘;f ET LC 0923 0992 0991 099 097
ML 0931 0979 0979 0981 0.973

PDE 0953 0972 0981 0981 0.983

_ E 0903 0905 0918 0908 0933
Stacking of ET, RF JL?T 0933 0958 0962 0962 0.958
f‘e”a‘in[;:a%’;t;a:;ult LC 0923 0089 0989 0989 0.988
P ML 093 0977 0984 0984 0977
PDE 0953 0974 0981 0981 0.966

For the Random Forest and Extra Trees algorithms,
the Correlation Filter (CO) feature selection technique
yielded better performance across all datasets except
EQ. The SFS technique also demonstrated good
performance on the EQ, JDT, and LC datasets. In the
Gradient Boosting experiments, the SFS technique
achieved superior performance on three datasets,
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namely, EQ, JDT, and PDE, while the CO technique
performed well on the LC and ML models. For the
Extreme Gradient Boosting algorithm, the CO feature
selection method produced better results across all
datasets except EQ, where SFS again performed well on
EQ and PDE. All four ensemble learning algorithms
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employed the Decision Tree (DT) as their base
classifier.

The remaining ensemble learning algorithms,
Bagging, AdaBoost, and Stacking, utilized different
base learners, including SVM, NB, DT, and KNN,
among which the DT algorithm demonstrated superior
performance. Both Bagging and AdaBoost employed
the ET classifier as the base learner under different
feature selection settings. In the Bagging experimental
setup, the CO feature selection technique yielded better
performance across all datasets except EQ, while the
SFS technique performed well only on the EQ dataset.
In contrast, for the AdaBoost experiments, the SFS
technique showed better performance on the EQ, JDT,
and PDE datasets, whereas the CO technique performed
well only on the LC and ML datasets. For the Stacking

Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

experiments, where ET, RF, and DT were used as base
learners with a default final estimator integrated with
each feature selection technique, the CO method again
produced better performance across all datasets except
EQ. However, the SFS technique demonstrated good
performance only on the EQ dataset.

Table 5 presents the performance comparison of
three feature selection techniques, including the three
CO threshold values, combined with seven ensemble
machine learning algorithms across the five datasets.
The results indicate that the CO feature selection
technique achieved best performance compared to both
SFS and CFS, with a 0.9 threshold value. The SFS
technique also demonstrated good performance on some
datasets.

Table 5: Performance values of all the ensembles learning algorithms

Performance Ensemble Learning Algorithm
Datasets .
metrics RF ET GB XGBoost BET AET  SDF
Accuracy 0.913 0.915 0.91 0.905 0.918 0.918  0.908
AUC 0.972 0.983 0.951 0.958 0.976 0.983  0.982
EQ F1-Measure 0.915 0.918 0.909 0.906 0.920 0.920 0.908
Precision 0.900 0.900 0.900 0.889 0.897 0.898  0.902
Recall 0.934 0.952 0.916 0.927 0.948 0.947 0.944
Accuracy 0.959 0.970 0.947 0.967 0.965 0.966  0.962
AUC 0.994 0.996 0.985 0.990 0.995 0.996  0.995
DT F1-Measure 0.959 0.97 0.946 0.967 0.966 0.965  0.962
Precision 0.961 0.962 0.959 0.964 0.958 0.957 0.961
Recall 0.957 0.979 0.935 0.971 0.974 0.974 0.964
Accuracy 0.984 0.989 0.976 0.979 0.987 099  0.989
AUC 0.999 1.000 0.995 0.998 0.999 1.000  0.999
LC F1-Measure 0.984 0.989 0.976 0.979 0.987 0.991  0.989
Precision 0.983 0.987 0.979 0.974 0.984 0.987  0.990
Recall 0.986 0.998 0.973 0.985 0.990 0.995  0.987
Accuracy 0.975 0.982 0.939 0.976 0.981 0.981 0.984
AUC 0.996 0.997 0.984 0.995 0.998 0.996  0.997
ML F1-Measure 0.975 0.982 0.939 0.975 0.981 0979 0.981
Precision 0.974 0.975 0.932 0.975 0.973 0.975 0.978
Recall 0.976 0.990 0.947 0.976 0.990 0.984 0.990
Accuracy 0.975 0.982 0.937 0.970 0.98 0.981 0.981
AUC 0.996 0.999 0.978 0.995 0.998 0.999  0.999
PDE F1-Measure 0.974 0.982 0.937 0.970 0.980 0.981 0.981
Precision 0.975 0.973 0.933 0.969 0.972 0972 0.976
Recall 0.974 0.992 0.941 0.970 0.989 0.990 0.985
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Further analysis of the CO feature selection
technique across the seven ensemble algorithms was
conducted to identify the best-performing ensemble
learning models. Again, the CO method with a 0.9
threshold outperformed the other CO threshold settings.
The experimental results show that ET ensemble
algorithm achieved the best performance on most
datasets, followed by AdaBoost and Stacking, which
ranked second and third, respectively. In contrast, GB
ensemble algorithm exhibited the lowest performance
across all datasets.

3.3 Hyper-parameter of the best algorithm
As depicted in Table 6, hyper-parameters on the best
performing ensemble learning model (ET approach)

Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

were further utilized to get the best performance of ET
itself rather than taking default hyper-parameter. Here,
Nested Cross Validation (10-fold Inner CV and 10-fold
Outer CV) are applied. In other words, appropriate
parameters on all five datasets are found using
optimized value ranges with grid search algorithm
where ET model resulted in the best output. Ten-fold
inner loop CV and 10-fold outer loop CV are used
during each iteration in order to the algorithm choose
different combinations of the features from5* 3*3* 3
*3*3=1,215 settings. In Table 6, results of all metrics
of best hyper-parameters and default hyper-parameter
are displayed with all datasets for the best algorithm.

Table 6: Software defect prediction using new deep forest (DPDF) (Zhou et al., 2019) and best performing
ensemble learning (ET with best and default hyper-parameters)

Performance Hyper-parameter of ET

Dataset Metrics Sost Sefat DPDF Best hyper-parameters
Accuracy 0.926 0.915 0.78
AUC 0.970 0.983 0.85  criterion='gini',max_depth=90,min_samples_
EQ F1-Measure 0.928 0.918 0.75  leaf=1,min_samples_split=5,max_features="l
Precision 0.906 0.900 0.70  0g2',n_estimators=10
Recall 0.954 0.952 0.81
Accuracy 0.973 0.970 0.85
AUC 0.997 0.996 0.86 o _ .
DT F1-Measure 0.973 0.970 0.56 ::rltfe_rllon— gtI.nI ,Tax__%%p(;[h—Yo,mm_samples_
Precision 0.968 0962 072 CATHNESUMANS=
Recall 0.979 0.979 0.46
Accuracy 0.991 0.989 0.93
AUC 1.000 1.000 0.82 S _ .
LC F1-Measure 0.991 0.989 0.37 ::rltfe_rllon— gtI.nI ,Tax__%%p(;[h—Yo,mm_samples_
Precision 0.985 0.087  0gL ca- N ESUMANS=
Recall 0.998 0.998 0.24
Accuracy 0.982 0.982 0.87
AUC 0.997 0.997 0.82  criterion="entropy',max_depth=80,max_featu
ML F1-Measure 0.983 0.982 0.26  res='log2',min_samples_leaf=1,n_estimators
Precision 0.975 0.975 047 =400
Recall 0.991 0.990 0.18
Accuracy 0.985 0.982 0.87
AUC 0.999 0.999 0.77  criterion="gini',max_depth=70,max_features
PDE  F1-Measure 0.985 0.982 031 ='log2',min_samples_leaf=1,n_estimators=20
Precision 0.979 0.973 059 0
Recall 0.991 0.992 0.21
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4. Conclusions

The goal of this research was to improve the
performance of software defect prediction models,
which has typically ranged between 70% and 90% in
previous studies. To achieve this, five AEEEM datasets
were used. Several preprocessing steps were performed
to prepare suitable datasets for the selected algorithms.
Z-score normalization was applied to reduce the effect
of outliers, followed by feature selection and class
balancing techniques to address high feature
dimensionality and class imbalance, respectively.
Finally, hyper-parameter optimization was conducted
on the best-performing ensemble model to ensure
reliable and generalizable findings.

The results show that the combination of the ET
ensemble learning algorithm with CO feature selection
and SMOTE-based data balancing achieved superior
performance compared to previous studies across all
five AEEEM datasets. All models developed in this
study obtained accuracy values exceeding 90%, a level
not achieved in earlier works. This improvement can be
attributed partly to the normalization, SMOTE, and
filtering techniques applied during data preprocessing,
and partly to the use of grid search with nested cross-
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validation for hyper-parameter optimization of the ET
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