

60

© 2026 Adama Science & Technology University. All rights reserved

Ethiopian Journal of Science and Sustainable Development

e-ISSN 2663-3205 Volume 13 (1), 2026

Journal Home Page: www.ejssd.astu.edu.et ASTU

Research Paper

Enhanced Software Defect Prediction Using Ensemble Learning with Correlation-

Based Feature Selection and SMOTE

Bahiru Shifaw Yimer1, Dita Abdujebar Abrahim2

1Department of Computer Science & Engineering, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia
2Department of Software Engineering, Haramaya University, P.O. Box: 138, Haramaya, Ethiopia

Article Info Abstract

Article History:

Received 20 June 2025

Received in revised form

28 October 2025

Accepted 07 November

2025

 Numerous studies have explored software defect prediction using machine learning

algorithms; however, their performance on publicly available defect datasets often remains

limited due to high feature dimensionality and class imbalance. This study addresses these

issues using five AEEEM project datasets; namely, Eclipse Equinox (EQ), JDT, Apache Lucene

(LC), Mylyn (ML), and PDE UI. Seven ensemble learning algorithms (AdaBoost, Gradient

Boosting, XGBoost, Random Forest, Extra Trees (ET), Bagging, and Stacking) were

implemented. To reduce dimensionality, three feature selection techniques, namely,

Correlation-Based Feature Selection (CFS), Sequential Forward Selection (SFS), and

Correlation-based Filter (CO), were applied, while the Synthetic Minority Oversampling

Technique (SMOTE) method was employed to handle class imbalance. Experiments were

conducted using 10-fold and nested cross-validation, and model performance was evaluated

using accuracy, recall, precision, F-measure, and Area under ROC curve (AUC) metrics. The

combination of CO feature selection with the ET ensemble algorithm outperformed all other

models across the five datasets. Using nested cross-validation with grid search optimization,

accuracies of 92.1, 97.3, 99.1, 98.2, and 98.5 % were achieved for the EQ, JDT, LC, ML, and

PDE datasets, respectively. These findings demonstrate that integrating effective feature

selection and data balancing significantly enhances defect prediction performance compared

to models using default hyper-parameters.

Keywords:

algorithms,

cross-validation,

extra tree,

grid search,

machine learning,

optimization

1. Introduction

Software is a crucial technology used to solve

societal problems across various domains of life. It is

developed using different frameworks and

programming languages. The software development

process must be carefully controlled and monitored to

ensure the production of high-quality software at an

optimal cost. It is also essential to follow Software

Quality Assurance practices such as code walkthroughs,

software testing, code inspections, and software defect

prediction (Adrion et al., 1982; Johnson & Malek, 1988;

Rathore & Kumar, 2019) to achieve this goal.

Corresponding author, e-mail: bahiru.shifaw@astu.edu.et

https://doi.org/10.20372/ejssdastu:v13.i1.2026.1111

Software companies and developers continue to face

challenges in producing quality software due to the

presence of defects throughout the development

process. A software defect is an error, flaw, fault, or bug

embedded in the requirements, design, or source code.

These challenges negatively affect the functionality of

the developed software and the experience of users

interacting with the product. The problem also extends

to the testing phase, where defects identified later in the

cycle can significantly impact software quality,

http://www.ejssd.astu.edu/
mailto:bahiru.shifaw@astu.edu.et

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

61

reliability, and maintenance cost (Rawat & Dubey,

2012).

As software systems become increasingly complex

and large, controlling, managing, fixing, reducing, and

testing defects becomes more difficult (Alsawalqah et

al., 2020). Therefore, attempting to control defects at

any phase of the software development life cycle

(SDLC), or detecting them early, helps developers,

testers, and software companies deliver high-quality

software (Rawat & Dubey, 2012). Software fault

prediction, as stated by Alsawalqah et al. (2020) and

Mehta & Patnaik (2021), is one of the most widely used

approaches to reduce software development and

maintenance costs during the testing phase of the SDLC.

It is a technique designed to enhance software quality

and efficiency by enabling timely detection of fault-

prone modules before the actual testing process takes

place (Rawat & Dubey, 2012; Alsawalqah et al., 2020).

Therefore, to produce quality software, early detection

of defects is essential before the testing phase begins.

Software bug prediction approaches or models play a

crucial role in this regard by classifying software

modules into defective and non-defective categories.

Software metrics are also used to quantitatively

describe the properties of specific software modules,

thereby helping to identify defective software (Shatnawi

& Li, 2008; Choudhary et al., 2018). Several researchers

have investigated different approaches for building and

evaluating software fault prediction models. These

approaches include binary classification of faults (Li &

Reformat, 2007; Mendes-Moreira et al., 2012;

Vandecruys et al., 2008; Rathore & Kumar, 2019;

Alsawalqah et al., 2020), bug or fault density prediction

(Rathore & Kumar, 2019; Rathore & Kumar, 2016), and

bug severity prediction (Sandhu et al., 2011; Shatnawi

& Li, 2008). However, the most commonly

implemented prediction scheme is binary classification,

in which software modules are categorized as faulty or

non-faulty.

Supervised learning approaches have also been

widely used for defect prediction, including ensemble

methods (Huda et al., 2018; Jiang et al., 2008), Decision

Trees (Koprinska et al., 2007), Support Vector

Machines (Elish & Elish, 2008), Naive Bayes (Menzies

et al., 2007), Random Forest, Neural Networks, and

Logistic Regression. In addition, unsupervised

techniques such as fuzzy clustering (Yuan et al., 2002)

and K-means clustering have been examined for bug

prediction. Semi-supervised methods, such as

Expectation Maximization (Seliya & Khoshgoftaar,

2007), have also been explored.

The performance of all the above approaches

generally remains below 90% accuracy (Alsawalqah et

al., 2020; Rathore & Kumar, 2019; Zhou et al., 2019).

However, reviews of recent studies in software fault

prediction show that ensemble learning methods are

more effective and achieve better predictive

performance (Aljamaan & Alazba, 2020; Matloob et al.,

2021). Alsawalqah et al. (2017) conducted experiments

using supervised ensemble classifiers such as Random

Forest, Bagging, and AdaBoost, along with base

classifiers including Multilayer Perceptron (MLP), C4.5

Decision Trees, and Naïve Bayes (NB), on NASA and

PROMISE project datasets. Their findings indicated

that AdaBoost combined with C4.5 Decision Trees

outperformed the other models. Similarly, Zhou et al.

(2019) applied supervised ensemble and deep learning

approaches, including Cascade Deep Forest (DPDF), a

hybrid ensemble and deep learning method, on 25

software projects from the NASA, PROMISE, AEEEM,

and Relink datasets. Their results showed that DPDF

achieved superior performance compared to other

models.

Aljamaan & Alazba (2020) evaluated supervised

ensemble classifiers such as Random Forest (RF), Extra

Trees (ET), Adaptive Boosting (AdaBoost), Categorical

Boosting (CatBoost), Extreme Gradient Boosting

(XGBoost), Gradient Boosting (GB), and Histogram-

Based Gradient Boosting (HGB) on NASA project

datasets, finding that RF and ET outperformed the rest.

Mehta (2021) applied several ensemble learning

methods, including RF, ET, AdaBoost, Stacking,

XGBoost, and Bagging, on NASA software project

datasets, with XGBoost and Stacking achieving the best

performance.

Generally, ensemble model offers improved

predictive performance, enhanced stability and

robustness, less overfitting, better handling of complex

data, leveraging model diversity and flexibility.

Mohammed & Kora (2023) assured that ensemble

approach offers a state-of-the-art method and can bypass

of the limitations in using a single model. Ensembles

often achieve better accuracy in predictions as they

combine multiple models. They are also less sensitive to

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

62

outliers and noisy data leading to more consistent and

reliable performance across different datasets.

Combining diverse models helps to reduce the overall

variance because of errors from model complexity as

well as bias due to simplistic models making it less

prone to overfitting the training data giving better

generalization capability to new, unseen data

(Mohammed & Kora, 2023). The rationale for using

ensembles is their property of combining diverse base

learners of different algorithms having different

strengths and weaknesses on different training data

obtained through adjusting weights thereby

compensating each other's limitations to result in

stronger overall predictive performance and better

generalization.

The performance of the machine learning algorithms

implemented by Balogun et al. (2020a) and Zhou et al.

(2019) on the AEEEM software defect datasets was

relatively low. For example, the study by Zhou et al.

(2019) on software defect prediction using the Deep

Forest (DPDF) model reported low accuracy due to high

feature dimensionality and class imbalance. Feature

selection technique can solve this problem by

identifying most relevant set of features. Class

balancing technique can also be used to remove class

imbalance problem. However, software defect datasets

are impacted by high feature dimensionality. The

techniques of identifying best set of features resulting

correct prediction were not extensively covered.

Moreover, class balancing techniques to solve a biased

classification problem well were not explored more.

This research work proposes software defect prediction

approaches that implement different ensemble

algorithms with various base classifiers. The attempt is

to increase the performance of prediction methods with

SMOTE class balancing methods and extensive features

selection mechanisms as preprocessing activity on

AEEEM project datasets of software module’s defect.

Therefore, this research is conducted to come up with

a prediction model while selecting determinant

attributes as well as finding effective ensemble learning

algorithms through reducing bias and avoiding

unbalanced classes. Hyper-parameter tuning was also

done to get reliable and generalizable findings.

2. Materials and Methods

2.1 Data source and dataset description

Publicly available online datasets of AEEEM

projects, gathered from different versions of software

systems such as Eclipse and Apache and collected by

D’Ambros et al. (2010), have been widely used in

software defect prediction research (Balogun et al.,

2020b; Zhou et al., 2019; You et al., 2016). The AEEEM

dataset contains five software projects, and each project

dataset includes a total of 62 attributes: one dependent

(defect-proneness) attribute and 61 independent

software metric attributes. These metrics are derived

from a combination of CK (Chidamber and Kemerer)

and object-oriented (OO) metrics, previous defect

metrics, entropy of change metrics, churn-based source

code metrics, and entropy of source code metrics

(D’Ambros et al., 2010).

The CK_OO metric group consists of six CK metrics

and eleven OO metrics, making a total of 17 metrics.

The Previous Defects Metrics group contains five

indicators of historical defect occurrences used to

predict future defects: all bugs, non-trivial bugs

(severity > trivial), major bugs (severity > major),

critical bugs (critical or blocker), and high-priority bugs.

The Entropy of Change Metrics group includes five

measures that quantify the complexity of code changes

across time. The Churn of Source Code Metrics group

consists of code churn measures calculated using

weighted churn deltas instead of simple lines-of-code

churn. This group, known as Weighted Churn Metrics

(WCHU), also contains 17 metrics. The Entropy of

Source Code Metrics group computes entropy values

directly from source code metrics rather than from

change information, represented as Linearly Decayed

Entropy metrics (LDHH), totaling another 17 metrics.

Each AEEEM project was developed for different

purposes. Eclipse Equinox (EQ) is an implementation of

the OSGi framework specification and provides core

services and infrastructure for executing OSGi-based

systems. JDT Core is used to support Java infrastructure

within the Eclipse IDE, including the Java compiler,

formatter, code assistance, and navigation support.

Apache Lucene (LC) is a high-performance Java-based

search engine library that provides full-text search, spell

correction, structured search, and nearest-neighbor

search capabilities. Mylyn (ML) is an Eclipse

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

63

framework for task management and application

lifecycle support, offering a task-focused interface and

ALM integration tools. Finally, PDE UI is the Eclipse

user interface framework used for developing, testing,

debugging, and deploying Eclipse plug-ins. It includes

OSGi tooling and provides project creation wizards,

editors, launchers, conversion tools, user assistance

tools, and integration with JDT.

Table 1 presents the detail description of AEEEM

datasets of the five software projects with their number

of attributes, number of modules (instances),

programming language developed, number of defective

and percentage of defective modules.

Table 1: Datasets of AEEEM projects developed with

Java programming language and 61 features

AEEEM

project

purpose

No of

instances

(Software

modules)

Defective
% of

defective

EQ 324 129 39.80

JDT 997 206 20.70

LC 691 64 9.30

ML 1862 245 13.20

PDE 1497 209 13.96

Total 5371 853 15.90

2.2 The proposed software defect prediction

architecture

The proposed software defect prediction (SDP)

architecture is designed to classify software modules

into defective and non-defective categories using

ensemble machine learning algorithms. As shown in

Figure 1, the architecture integrates multiple techniques

that support experimental framework of the SDP model.

Figure 1: General architecture of Software defect prediction

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

64

The preprocessing phase includes data cleaning, data

normalization using the Z-score method, dimensionality

reduction through Correlation-Based Feature Selection

(CFS), Sequential Forward Selection (SFS), and

Correlation Filtering (CO), as well as data class

balancing using the Synthetic Minority Oversampling

Technique (SMOTE). CFS and CO are categorized

under filtering methods while SFS is among wrapper

methods used in data preprocessing steps of machine

learning classifier. Hence, SFS was used with all the

selected ensemble learning algorithms as well as with

other selected base classifier in the study. CO feature

selection technique uses brute force methods which can

be implemented in terms of different threshold (0.7, 0.8,

and 0.9) points which are experimented to extract

substantial features. Feature selection techniques were

applied to choose relevant set of attributes for enhancing

prediction power of classifier algorithms and to

minimize over fitting.

Ensemble learning algorithms such as AdaBoost,

GB, XGBoost, RF, ET, Bagging, and Stacking are

employed in the study. Furthermore, base classifiers

including Support Vector Machine (SVM), Naive

Bayes, Decision Tree, and K-Nearest Neighbor (KNN)

are utilized. All the ensemble and base learning

algorithms mentioned above are used to construct

predictive models capable of identifying and classifying

software modules as defective or non-defective.

The predictive performance of each model is

assessed using standard performance evaluation

metrics, namely, accuracy, recall, precision, F-measure,

and Area under ROC curve (AUC) and the model

demonstrating the highest accuracy and generalization

capability was declared as the optimal one.

2.3 Hyper-performance optimization

Hyper-parameter tuning is the process of searching

for and identifying the optimal parameter values of

machine learning models to enhance their performance.

Various hyper-parameter optimization techniques exist,

including grid search, random search, genetic

algorithms, and differential evolution. In software

defect prediction, grid search, which systematically

explores all possible combinations of parameter values

within a defined search space, is often used (Mohammed

& Kora, 2023). The search space consists of a set of

hyper-parameters and their corresponding candidate

values. For each combination, the grid search algorithm

builds and evaluates a model, and the hyper-parameter

values that yield the best-performing model are returned

as the optimal settings. In this study, the hyper-

parameters summarized in Table 2 were applied across

the five datasets to obtain reliable and generalizable

results.

3. Results and Discussion

3.1 Data preprocessing

All selected dataset features were normalized within

the range of –3.00 to 3.00. As shown in Table 3,

increasing the number of threshold points positively

affected the model performance. The table summarizes

the number of attributes selected by various feature

selection methods. The datasets employed in this study

suffer from class imbalance, causing the majority class

to dominate the minority class during the machine

learning training process. To address this issue, SMOTE

was implemented to balance the dataset by

oversampling the minority class instances.

Table 2: Hyper-parameters used for best performance ensemble learning (ET Approach)

Hyper-parameter

name

Description value Optimized value

range
n_estimators Number of trees in the forest [10,50,200,300,400]

 max_depth Maximum depth of the tree. [70,80,90]

 min_samples_leaf Minimum number of samples at a leaf node [0.0001,1, 2] ['gini',

'entropy']

criterion Measure the quality of a split. ['gini', 'entropy']

 max_features

max number of features used for splitting a node ['auto', 'sqrt','log2']

 min_samples_split

Minimum number of samples before the node is split [2,3,5]

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

65

Table 3: The number of selected attributes for each algorithms in model building

Datasets CFS
CO (threshold) Ensemble learning algorithm

0.7 0.8 0.9 RF ET GB XGBoost BET AE

T

SDF

EQ 17 14 26 39 11 7 47 7 16 7 9

JDT 12 16 27 45 31 5 50 12 23 26 6

LC 7 26 34 47 9 15 19 9 10 6 23

ML 16 24 34 47 34 26 47 18 14 38 15

PDE 15 20 28 45 11 20 30 16 13 28 15

BET: Bagging with Extra tree base learner, AET: Adaptive boosting with Extra tree base learner,

SDF: Stacking by default final Meta learner with base weak learner (ET, RF and DT)

Figure 2 shows the sizes of both defective and non-

defective classes for each of the five datasets, before and

after data balancing. Before balancing, the dataset

contained 4,518 non-defective and 853 defective

modules, making a total of 5,371 instances. After

applying the balancing technique, the total number of

instances increased to 9,036, consisting of 4,518 non-

defective and 4,518 defective modules. Specifically, the

datasets EQ, JDT, LC, ML, and PDE contained 324,

791, 627, 1,617, and 1,288 non-defective modules,

respectively, along with 129, 206, 64, 245, and 209

defective modules before balancing. After balancing,

each dataset contained an equal number of defective and

non-defective modules.

3.2 Performance prediction of the ensemble

learning algorithms

The experimental results of the selected ensemble

learning algorithms with the implementation of the

feature selection techniques are depicted in Table 4.

Figure 2: Size and class categories of datasets before and after balancing using SMOTE

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Defect Before

Balancing

Non-Defect

Before

Balancing

Defect and

Non-Defect

Before

Balancing

Defect After

Balancing

Non-Defect

After

Balancing

Defect and

Non-Defect

After

Balancing

C
la

ss
 s

iz
e

Dataset class types

EQ JDT

LC ML

PDE TOTAL

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

66

Table 4: Accuracy result of the ensemble learning algorithms with the feature selection techniques

Algorithm Datasets CFS CO (threshold) SFS
0.7

0.8 0.9

Random Forest

(RF)

EQ 0.903 0.915

0.915 0.913

0.944

JDT 0.927 0.946

0.961 0.959

0.961

LC 0.918 0.978

0.98 0.984

0.980

ML 0.927 0.972 0.976 0.975 0.975

PDE 0.949 0.966 0.971 0.975 0.963

Extra Tree (ET)

EQ 0.89 0.905

0.931 0.915

0.936

JDT 0.937 0.958

0.963 0.97

0.963

LC 0.927 0.994

0.992 0.989

0.988

ML 0.93 0.977

0.982 0.982

0.982

PDE 0.952 0.972

0.972

0.972

0.972

0.972

0.972

0.978 0.982

0.974

Gradient Boosting

(GB)

EQ 0.897 0.879

0.91 0.91

0.923

JDT 0.894 0.922

0.936 0.947

0.951

LC 0.887 0.979

0.975 0.976

0.961

ML 0.867 0.925

0.935 0.939

0.932

PDE 0.847 0.923

0.926 0.937 0.932

Extreme Gradient

Boosting

(XGBoost)

EQ 0.905 0.923

0.908 0.905

0.928

JDT 0.924 0.955

0.965 0.967

0.963

LC 0.91 0.982

0.982 0.979

0.978

ML 0.921 0.973

0.973 0.976

0.972

PDE 0.929 0.965

0.97 0.97

0.97

Bagging of ET base

learner

EQ 0.887 0.903

0.913 0.918

0.928

JDT 0.934 0.948

0.96 0.965

0.958

LC 0.919 0.99

0.99 0.987

0.977

ML 0.926 0.975

0.981 0.981

0.975

PDE 0.946 0.969

0.978 0.98

0.969

AdaBoost of ET

base learner

EQ 0.882 0.903

0.918 0.918

0.954

JDT 0.93 0.958

0.965 0.966 0.966

LC 0.923 0.992

0.991 0.99

0.97

ML 0.931 0.979

0.979 0.981

0.973

PDE 0.953 0.972

0.981 0.981

0.983

Stacking of ET, RF

and DT on base

learner and default

final estimator

EQ 0.903 0.905 0.918 0.908 0.933

JDT 0.933 0.958 0.962 0.962 0.958

LC 0.923 0.989 0.989 0.989 0.988

ML 0.93 0.977 0.984 0.984 0.977

PDE 0.953 0.974 0.981 0.981 0.966

For the Random Forest and Extra Trees algorithms,

the Correlation Filter (CO) feature selection technique

yielded better performance across all datasets except

EQ. The SFS technique also demonstrated good

performance on the EQ, JDT, and LC datasets. In the

Gradient Boosting experiments, the SFS technique

achieved superior performance on three datasets,

namely, EQ, JDT, and PDE, while the CO technique

performed well on the LC and ML models. For the

Extreme Gradient Boosting algorithm, the CO feature

selection method produced better results across all

datasets except EQ, where SFS again performed well on

EQ and PDE. All four ensemble learning algorithms

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

67

employed the Decision Tree (DT) as their base

classifier.

The remaining ensemble learning algorithms,

Bagging, AdaBoost, and Stacking, utilized different

base learners, including SVM, NB, DT, and KNN,

among which the DT algorithm demonstrated superior

performance. Both Bagging and AdaBoost employed

the ET classifier as the base learner under different

feature selection settings. In the Bagging experimental

setup, the CO feature selection technique yielded better

performance across all datasets except EQ, while the

SFS technique performed well only on the EQ dataset.

In contrast, for the AdaBoost experiments, the SFS

technique showed better performance on the EQ, JDT,

and PDE datasets, whereas the CO technique performed

well only on the LC and ML datasets. For the Stacking

experiments, where ET, RF, and DT were used as base

learners with a default final estimator integrated with

each feature selection technique, the CO method again

produced better performance across all datasets except

EQ. However, the SFS technique demonstrated good

performance only on the EQ dataset.

Table 5 presents the performance comparison of

three feature selection techniques, including the three

CO threshold values, combined with seven ensemble

machine learning algorithms across the five datasets.

The results indicate that the CO feature selection

technique achieved best performance compared to both

SFS and CFS, with a 0.9 threshold value. The SFS

technique also demonstrated good performance on some

datasets.

Table 5: Performance values of all the ensembles learning algorithms

Datasets
Performance

metrics

Ensemble Learning Algorithm

RF ET GB XGBoost BET AET SDF

EQ

Accuracy 0.913

0.915

0.91

0.905

0.918

0.918 0.908

AUC 0.972

0.983

0.951

0.958

0.976

0.983 0.982

F1-Measure 0.915

0.918

0.909

0.906

0.920

0.920 0.908

Precision 0.900

0.900

0.900

0.889

0.897

0.898 0.902

Recall 0.934

0.952

0.916

0.927

0.948

0.947 0.944

JDT

Accuracy 0.959

0.970

0.947

0.967

0.965

0.966 0.962

AUC 0.994

0.996

0.985

0.990

0.995

0.996 0.995

F1-Measure 0.959

0.97

0.946

0.967

0.966

0.965 0.962

Precision 0.961

0.962

0.959

0.964

0.958

0.957 0.961

Recall 0.957

0.979

0.935

0.971

0.974

0.974 0.964

LC

Accuracy 0.984

0.989

0.976

0.979

0.987

0.99 0.989

AUC 0.999

1.000

0.995

0.998

0.999

1.000 0.999

F1-Measure 0.984

0.989

0.976

0.979

0.987

0.991 0.989

Precision 0.983

0.987

0.979

0.974

0.984

0.987 0.990

Recall 0.986

0.998

0.973

0.985

0.990

0.995 0.987

ML

Accuracy 0.975

0.982

0.939

0.976

0.981

0.981 0.984

AUC 0.996

0.997

0.984

0.995

0.998

0.996 0.997

F1-Measure 0.975

0.982

0.939

0.975

0.981

0.979 0.981

Precision 0.974

0.975

0.932

0.975

0.973

0.975 0.978

Recall 0.976

0.990

0.947

0.976

0.990

0.984 0.99 0

PDE

Accuracy 0.975

0.982

0.937

0.970

0.98

0.981 0.981

AUC 0.996

0.999

0.978

0.995

0.998

0.999 0.999

F1-Measure 0.974

0.982

0.937

0.970

0.980

0.981 0.981

Precision 0.975

0.973

0.933

0.969

0.972

0.972 0.976

Recall 0.974

0.992

0.941

0.970

0.989

0.990 0.985

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

68

Further analysis of the CO feature selection

technique across the seven ensemble algorithms was

conducted to identify the best-performing ensemble

learning models. Again, the CO method with a 0.9

threshold outperformed the other CO threshold settings.

The experimental results show that ET ensemble

algorithm achieved the best performance on most

datasets, followed by AdaBoost and Stacking, which

ranked second and third, respectively. In contrast, GB

ensemble algorithm exhibited the lowest performance

across all datasets.

3.3 Hyper-parameter of the best algorithm

As depicted in Table 6, hyper-parameters on the best

performing ensemble learning model (ET approach)

were further utilized to get the best performance of ET

itself rather than taking default hyper-parameter. Here,

Nested Cross Validation (10-fold Inner CV and 10-fold

Outer CV) are applied. In other words, appropriate

parameters on all five datasets are found using

optimized value ranges with grid search algorithm

where ET model resulted in the best output. Ten-fold

inner loop CV and 10-fold outer loop CV are used

during each iteration in order to the algorithm choose

different combinations of the features from 5 * 3* 3 * 3

* 3 * 3 = 1,215 settings. In Table 6, results of all metrics

of best hyper-parameters and default hyper-parameter

are displayed with all datasets for the best algorithm.

Table 6: Software defect prediction using new deep forest (DPDF) (Zhou et al., 2019) and best performing

ensemble learning (ET with best and default hyper-parameters)

Dataset
Performance

Metrics

Hyper-parameter of ET
DPDF Best hyper-parameters

Best Default

EQ

Accuracy 0.926

0.915

0.78

criterion='gini',max_depth=90,min_samples_

leaf=1,min_samples_split=5,max_features='l

og2',n_estimators=10

AUC 0.970

0.983

0.85

F1-Measure 0.928

0.918

0.75

Precision 0.906

0.900

0.70

Recall 0.954

0.952

0.81

JDT

Accuracy 0.973

0.970

0.85

criterion='gini',max_depth=70,min_samples_

leaf=1,n_estimators=300

AUC 0.997

0.996

0.86

F1-Measure 0.973

0.970

0.56

Precision 0.968

0.962

0.72

Recall 0.979

0.979

0.46

LC

Accuracy 0.991

0.989

0.93

criterion='gini',max_depth=70,min_samples_

leaf=1,n_estimators=300

AUC 1.000

1.000

0.82

F1-Measure 0.991

0.989

0.37

Precision 0.985

0.987

0.81

Recall 0.998

0.998

0.24

ML

Accuracy 0.982

0.982

0.87

criterion='entropy',max_depth=80,max_featu

res='log2',min_samples_leaf=1,n_estimators

=400

AUC 0.997

0.997

0.82

F1-Measure 0.983

0.982

0.26

Precision 0.975

0.975

0.47

Recall 0.991

0.990

0.18

PDE

Accuracy 0.985

0.982

0.87

criterion='gini',max_depth=70,max_features

='log2',min_samples_leaf=1,n_estimators=20

0

AUC 0.999

0.999

0.77

F1-Measure 0.985

0.982

0.31

Precision 0.979

0.973

0.59

Recall 0.991

0.992

0.21

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

69

4. Conclusions

The goal of this research was to improve the

performance of software defect prediction models,

which has typically ranged between 70% and 90% in

previous studies. To achieve this, five AEEEM datasets

were used. Several preprocessing steps were performed

to prepare suitable datasets for the selected algorithms.

Z-score normalization was applied to reduce the effect

of outliers, followed by feature selection and class

balancing techniques to address high feature

dimensionality and class imbalance, respectively.

Finally, hyper-parameter optimization was conducted

on the best-performing ensemble model to ensure

reliable and generalizable findings.

The results show that the combination of the ET

ensemble learning algorithm with CO feature selection

and SMOTE-based data balancing achieved superior

performance compared to previous studies across all

five AEEEM datasets. All models developed in this

study obtained accuracy values exceeding 90%, a level

not achieved in earlier works. This improvement can be

attributed partly to the normalization, SMOTE, and

filtering techniques applied during data preprocessing,

and partly to the use of grid search with nested cross-

validation for hyper-parameter optimization of the ET

algorithm, which was identified as the best-performing

ensemble model through 10-fold cross-validation.

Overall, integrating ensemble learning algorithms

with feature filtering mechanisms, data balancing

techniques, and 10-fold resampling evaluation

significantly enhanced the predictive accuracy of the

software defect models used in this study. Nevertheless,

future work should consider developing software defect

prediction models using deep learning algorithms,

which may further improve prediction accuracy.

Software companies are also encouraged to prepare and

release more software system datasets to support

ongoing research in defect prediction. Additionally,

conducting experiments on both private and publicly

available datasets using alternative class balancing and

feature selection methods may further strengthen

software defect prediction performance.

Acknowledgements: The authors would like to

thank Adama Science and Technology University and

Haramaya University for their support during the course

of the project related to this manuscript..

References

Adrion, W. R., Branstad, M. A., & Cherniavsky, J. C. (1982). Validation, Verification, and Testing of Computer Software. ACM

Computing Surveys, 14(2), 159–192.

Aljamaan, H. & Alazba, A. (2020). Software Defect Prediction using Tree-Based Ensembles. In: Proceedings of the 16th ACM

Int. Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE 2020).

Alsawalqah, H., Faris, H., Aljarah, I., Alnemer, L., & Alhindawi, N. (2017). Hybrid SMOTE-Ensemble Approach for Software

Defect Prediction. In: Silhavy, R., Silhavy, P., Prokopova, Z., Senkerik, R., Kominkova Oplatkova, Z. (eds) Software

Engineering Trends and Techniques in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing,

vol. 575. Springer, Cham.

Alsawalqah, H., Hijazi, N., Eshtay, M., Faris, H., Al Radaideh, A., Aljarah, I., & Alshamaileh, Y. (2020). Software defect

prediction using heterogeneous ensemble classification based on segmented patterns. Applied Sciences, 10(5), 1745

Balogun, A. O., Basri, S., Mahamad, S., Abdulkadir, S. J., Almomani, M. A., Adeyemo, V. E., Al-Tashi, Q., Mojeed, H. A.,

Imam, A. A., & Bajeh, A. O. (2020b). Impact of Feature Selection Methods on the Predictive Performance of Software

Defect Prediction Models: An Extensive Empirical Study. Symmetry, 12(7), 1147

Balogun, A.O., Lafenwa-balogun, F. B., Mojeed, H., & Adeyemo, V. E. (2020a). SMOTE-Based Homogeneous Ensemble

Methods for Software Defect Prediction. In: Gervasi, O., et al. Computational Science and Its Applications - ICCSA 2020.

Lecture Notes in Computer Science, Vol. 12254, pp. 615-631. Springer, Cham.

Choudhary, G.R., Kumar, S., Kumar, K., Mishra, A., & Catal, C. (2018). Empirical analysis of change metrics for software fault

prediction. Computers & Electrical Engineering, 67, 15-24

D’Ambros, M., Lanza, M., & Robbes, R. (2010). An Extensive Comparison of Bug Prediction Approaches. Proceedings of 7 th

IEEE Working Conference on Mining Software Repositories (MSR), 2-3 May 2010, Cape Town, South Africa

Elish, K. O., & Elish, M. O. (2008). Predicting defect-prone software modules using support vector machines. Journal of Systems

and Software, 81, 649–660.

Huda, S., Liu, K., Abdelrazek, M., Ibrahim, A., Alyahya, S., Al-Dossari, H., & Ahmad, S. (2018). An ensemble oversampling

model for class imbalance problem in software defect prediction. IEEE Access, 6.

Jiang, Y., Cukic, B., & Ma, Y. (2008). Techniques for evaluating fault prediction models. Empirical Software Engineering, 13,

561–595.

Bahiru Shifaw and Dita Abdujebar Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026

70

Johnson, A. M., & Malek, M. (1988). Survey of software tools for evaluating reliability, availability, and serviceability. ACM

Computing Surveys, 20(4), 227–269.

Koprinska, I., Poon, J., Clark, J., & Chan, J. (2007). Learning to classify e-mail. Information Sciences, 177 (10), 2167-2187

Li, Z. & Reformat, M. (2007). A practical method for the software fault-prediction. In: Proceedings of IEEE International

Conference on Information Reuse and Integration, IEEE IRI-2007, 659–666.

Matloob, F., Ghazal, T. M., Taleb, N., Aftab, S., Ahmad, M., Khan, M. A., Abbas, S., & Soomro, T. R. (2021). Software defect

prediction using ensemble learning: A systematic literature review. IEEE Access, 9, 98754–98771

Mehta, S., & Patnaik, K.S. (2021). Improved prediction of software defects using ensemble machine learning techniques. Neural

Computing and Applications, 33, 10551–10562.

Mendes-Moreira, J., Soares, C., Jorge, A. M., & De Sousa, J. F. (2012). Ensemble approaches for regression: A survey. ACM

Computing Surveys, 45(1), 10

Menzies, T., Greenwald, J., & Frank, A. (2007). Data Mining Static Code Attributes to Learn Defect Predictors. IEEE

Transactions on Software Engineering, 33(1), 2–13.

Mohammed, A., & Kora, R. (2023). A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal

of King Saud University - Computer and Information Sciences, 35(2), 757-774

Rathore, S. S., & Kuamr, S. (2016). Comparative analysis of neural network and genetic programming for number of software

faults prediction. 2015 National Conference on Recent Advances in Electronics & Computer Engineering (RAECE), 328–

332.

Rathore, S. S., & Kumar, S. (2019). A study on software fault prediction techniques. Artificial Intelligence Review, 51, 255–327.

Rawat, M. S., & Dubey, S. K. (2012). Software Defect Prediction Models for Quality Improvement: A Literature Study.

International Journal of Computer Science Issues, 9(5), 288–296.

Sandhu P.S., Singh S., & Budhija N. (2011) Prediction of level of severity of faults in software systems using density based

clustering. In: Proceedings of the 9th international conference on software and computer applications, IACSIT Press'11.

Seliya, N., & Khoshgoftaar, T. M. (2007). Software quality estimation with limited fault data: a semi-supervised learning

perspective. Software Quality Journal, 15, 327–344.

Shatnawi, R., & Li, W. (2008). The effectiveness of software metrics in identifying error-prone classes in post-release software

evolution process. Journal of Systems and Software, 81(11), 1868–1882.

Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M., & Haesen, R. (2008). Mining software repositories for

comprehensible software fault prediction models. Journal of Systems and Software, 81(5), 823–839.

You, G., Wang, F. & Ma, Y. (2016). An Empirical Study of Ranking-Oriented Cross-Project Software Defect Prediction. Int.

Journal of Software Engineering & Knowledge Engineering, 26, (9 &10), 1511-1538

Yuan, X., Khoshgoftaar, T.M., Allen, E. B., & Ganesan, K. (2002). An Application of Fuzzy Clustering to Software Quality

Prediction. Proceedings 3rd IEEE Symposium on Application-Specific Systems and Software Engineering Technology,

24-25 March 2000.

Zhou, T., Sun, X., Xia, X., Li, B., & Chen, X. (2019). Improving defect prediction with deep forest. Information and Software

Technology, 114, 204–216.

