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 Numerous studies have explored software defect prediction using machine learning 

algorithms; however, their performance on publicly available defect datasets often remains 

limited due to high feature dimensionality and class imbalance. This study addresses these 

issues using five AEEEM project datasets; namely, Eclipse Equinox (EQ), JDT, Apache Lucene 

(LC), Mylyn (ML), and PDE UI. Seven ensemble learning algorithms (AdaBoost, Gradient 

Boosting, XGBoost, Random Forest, Extra Trees (ET), Bagging, and Stacking) were 

implemented. To reduce dimensionality, three feature selection techniques, namely, 

Correlation-Based Feature Selection (CFS), Sequential Forward Selection (SFS), and 

Correlation-based Filter (CO), were applied, while the Synthetic Minority Oversampling 

Technique (SMOTE) method was employed to handle class imbalance. Experiments were 

conducted using 10-fold and nested cross-validation, and model performance was evaluated 

using accuracy, recall, precision, F-measure, and Area under ROC curve (AUC) metrics. The 

combination of CO feature selection with the ET ensemble algorithm outperformed all other 

models across the five datasets. Using nested cross-validation with grid search optimization, 

accuracies of 92.1, 97.3, 99.1, 98.2, and 98.5 % were achieved for the EQ, JDT, LC, ML, and 

PDE datasets, respectively. These findings demonstrate that integrating effective feature 

selection and data balancing significantly enhances defect prediction performance compared 

to models using default hyper-parameters. 
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1. Introduction 

Software is a crucial technology used to solve 

societal problems across various domains of life. It is 

developed using different frameworks and 

programming languages. The software development 

process must be carefully controlled and monitored to 

ensure the production of high-quality software at an 

optimal cost. It is also essential to follow Software 

Quality Assurance practices such as code walkthroughs, 

software testing, code inspections, and software defect 

prediction (Adrion et al., 1982; Johnson & Malek, 1988; 

Rathore & Kumar, 2019) to achieve this goal. 

                                                           
Corresponding author, e-mail: bahiru.shifaw@astu.edu.et      
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Software companies and developers continue to face 

challenges in producing quality software due to the 

presence of defects throughout the development 

process. A software defect is an error, flaw, fault, or bug 

embedded in the requirements, design, or source code. 

These challenges negatively affect the functionality of 

the developed software and the experience of users 

interacting with the product. The problem also extends 

to the testing phase, where defects identified later in the 

cycle can significantly impact software quality, 

http://www.ejssd.astu.edu/
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reliability, and maintenance cost (Rawat & Dubey, 

2012). 

As software systems become increasingly complex 

and large, controlling, managing, fixing, reducing, and 

testing defects becomes more difficult (Alsawalqah et 

al., 2020). Therefore, attempting to control defects at 

any phase of the software development life cycle 

(SDLC), or detecting them early, helps developers, 

testers, and software companies deliver high-quality 

software (Rawat & Dubey, 2012). Software fault 

prediction, as stated by Alsawalqah et al. (2020) and 

Mehta & Patnaik (2021), is one of the most widely used 

approaches to reduce software development and 

maintenance costs during the testing phase of the SDLC. 

It is a technique designed to enhance software quality 

and efficiency by enabling timely detection of fault-

prone modules before the actual testing process takes 

place (Rawat & Dubey, 2012; Alsawalqah et al., 2020). 

Therefore, to produce quality software, early detection 

of defects is essential before the testing phase begins. 

Software bug prediction approaches or models play a 

crucial role in this regard by classifying software 

modules into defective and non-defective categories. 

Software metrics are also used to quantitatively 

describe the properties of specific software modules, 

thereby helping to identify defective software (Shatnawi 

& Li, 2008; Choudhary et al., 2018). Several researchers 

have investigated different approaches for building and 

evaluating software fault prediction models. These 

approaches include binary classification of faults (Li & 

Reformat, 2007; Mendes-Moreira et al., 2012; 

Vandecruys et al., 2008; Rathore & Kumar, 2019; 

Alsawalqah et al., 2020), bug or fault density prediction 

(Rathore & Kumar, 2019; Rathore & Kumar, 2016), and 

bug severity prediction (Sandhu et al., 2011; Shatnawi 

& Li, 2008). However, the most commonly 

implemented prediction scheme is binary classification, 

in which software modules are categorized as faulty or 

non-faulty. 

Supervised learning approaches have also been 

widely used for defect prediction, including ensemble 

methods (Huda et al., 2018; Jiang et al., 2008), Decision 

Trees (Koprinska et al., 2007), Support Vector 

Machines (Elish & Elish, 2008), Naive Bayes (Menzies 

et al., 2007), Random Forest, Neural Networks, and 

Logistic Regression. In addition, unsupervised 

techniques such as fuzzy clustering (Yuan et al., 2002) 

and K-means clustering have been examined for bug 

prediction. Semi-supervised methods, such as 

Expectation Maximization (Seliya & Khoshgoftaar, 

2007), have also been explored.  

The performance of all the above approaches 

generally remains below 90% accuracy (Alsawalqah et 

al., 2020; Rathore & Kumar, 2019; Zhou et al., 2019). 

However, reviews of recent studies in software fault 

prediction show that ensemble learning methods are 

more effective and achieve better predictive 

performance (Aljamaan & Alazba, 2020; Matloob et al., 

2021). Alsawalqah et al. (2017) conducted experiments 

using supervised ensemble classifiers such as Random 

Forest, Bagging, and AdaBoost, along with base 

classifiers including Multilayer Perceptron (MLP), C4.5 

Decision Trees, and Naïve Bayes (NB), on NASA and 

PROMISE project datasets. Their findings indicated 

that AdaBoost combined with C4.5 Decision Trees 

outperformed the other models. Similarly, Zhou et al. 

(2019) applied supervised ensemble and deep learning 

approaches, including Cascade Deep Forest (DPDF), a 

hybrid ensemble and deep learning method, on 25 

software projects from the NASA, PROMISE, AEEEM, 

and Relink datasets. Their results showed that DPDF 

achieved superior performance compared to other 

models. 

Aljamaan & Alazba (2020) evaluated supervised 

ensemble classifiers such as Random Forest (RF), Extra 

Trees (ET), Adaptive Boosting (AdaBoost), Categorical 

Boosting (CatBoost), Extreme Gradient Boosting 

(XGBoost), Gradient Boosting (GB), and Histogram-

Based Gradient Boosting (HGB) on NASA project 

datasets, finding that RF and ET outperformed the rest. 

Mehta (2021) applied several ensemble learning 

methods, including RF, ET, AdaBoost, Stacking, 

XGBoost, and Bagging, on NASA software project 

datasets, with XGBoost and Stacking achieving the best 

performance. 

Generally, ensemble model offers improved 

predictive performance, enhanced stability and 

robustness, less overfitting, better handling of complex 

data, leveraging model diversity and flexibility. 

Mohammed & Kora (2023) assured that ensemble 

approach offers a state-of-the-art method and can bypass 

of the limitations in using a single model. Ensembles 

often achieve better accuracy in predictions as they 

combine multiple models. They are also less sensitive to 
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outliers and noisy data leading to more consistent and 

reliable performance across different datasets. 

Combining diverse models helps to reduce the overall 

variance because of errors from model complexity as 

well as bias due to simplistic models making it less 

prone to overfitting the training data giving better 

generalization capability to new, unseen data 

(Mohammed & Kora, 2023). The rationale for using 

ensembles is their property of combining diverse base 

learners of different algorithms having different 

strengths and weaknesses on different training data 

obtained through adjusting weights thereby 

compensating each other's limitations to result in 

stronger overall predictive performance and better 

generalization.  

The performance of the machine learning algorithms 

implemented by Balogun et al. (2020a) and Zhou et al. 

(2019) on the AEEEM software defect datasets was 

relatively low. For example, the study by Zhou et al. 

(2019) on software defect prediction using the Deep 

Forest (DPDF) model reported low accuracy due to high 

feature dimensionality and class imbalance. Feature 

selection technique can solve this problem by 

identifying most relevant set of features. Class 

balancing technique can also be used to remove class 

imbalance problem. However, software defect datasets 

are impacted by high feature dimensionality. The 

techniques of identifying best set of features resulting 

correct prediction were not extensively covered. 

Moreover, class balancing techniques to solve a biased 

classification problem well were not explored more. 

This research work proposes software defect prediction 

approaches that implement different ensemble 

algorithms with various base classifiers. The attempt is 

to increase the performance of prediction methods with 

SMOTE class balancing methods and extensive features 

selection mechanisms as preprocessing activity on 

AEEEM project datasets of software module’s defect.  

Therefore, this research is conducted to come up with 

a prediction model while selecting determinant 

attributes as well as finding effective ensemble learning 

algorithms through reducing bias and avoiding 

unbalanced classes. Hyper-parameter tuning was also 

done to get reliable and generalizable findings. 

 

 

2. Materials and Methods 

2.1 Data source and dataset description 

Publicly available online datasets of AEEEM 

projects, gathered from different versions of software 

systems such as Eclipse and Apache and collected by 

D’Ambros et al. (2010), have been widely used in 

software defect prediction research (Balogun et al., 

2020b; Zhou et al., 2019; You et al., 2016). The AEEEM 

dataset contains five software projects, and each project 

dataset includes a total of 62 attributes: one dependent 

(defect-proneness) attribute and 61 independent 

software metric attributes. These metrics are derived 

from a combination of CK (Chidamber and Kemerer) 

and object-oriented (OO) metrics, previous defect 

metrics, entropy of change metrics, churn-based source 

code metrics, and entropy of source code metrics 

(D’Ambros et al., 2010). 

The CK_OO metric group consists of six CK metrics 

and eleven OO metrics, making a total of 17 metrics. 

The Previous Defects Metrics group contains five 

indicators of historical defect occurrences used to 

predict future defects: all bugs, non-trivial bugs 

(severity > trivial), major bugs (severity > major), 

critical bugs (critical or blocker), and high-priority bugs. 

The Entropy of Change Metrics group includes five 

measures that quantify the complexity of code changes 

across time. The Churn of Source Code Metrics group 

consists of code churn measures calculated using 

weighted churn deltas instead of simple lines-of-code 

churn. This group, known as Weighted Churn Metrics 

(WCHU), also contains 17 metrics. The Entropy of 

Source Code Metrics group computes entropy values 

directly from source code metrics rather than from 

change information, represented as Linearly Decayed 

Entropy metrics (LDHH), totaling another 17 metrics. 

Each AEEEM project was developed for different 

purposes. Eclipse Equinox (EQ) is an implementation of 

the OSGi framework specification and provides core 

services and infrastructure for executing OSGi-based 

systems. JDT Core is used to support Java infrastructure 

within the Eclipse IDE, including the Java compiler, 

formatter, code assistance, and navigation support. 

Apache Lucene (LC) is a high-performance Java-based 

search engine library that provides full-text search, spell 

correction, structured search, and nearest-neighbor 

search capabilities. Mylyn (ML) is an Eclipse 
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framework for task management and application 

lifecycle support, offering a task-focused interface and 

ALM integration tools. Finally, PDE UI is the Eclipse 

user interface framework used for developing, testing, 

debugging, and deploying Eclipse plug-ins. It includes 

OSGi tooling and provides project creation wizards, 

editors, launchers, conversion tools, user assistance 

tools, and integration with JDT.  

Table 1 presents the detail description of AEEEM 

datasets of the five software projects with their number 

of attributes, number of modules (instances), 

programming language developed, number of defective 

and percentage of defective modules.  

 

 

 

Table 1: Datasets of AEEEM projects developed with 

Java programming language and 61 features 

AEEEM 

project 

purpose  

 

No of 

instances 

(Software 

modules)  

Defective  
% of 

defective  

EQ  324 129 39.80 

JDT  997 206 20.70 

LC  691 64 9.30 

ML  1862 245 13.20 

PDE  1497 209 13.96 

Total  5371 853 15.90 

2.2 The proposed software defect prediction 

architecture 

The proposed software defect prediction (SDP) 

architecture is designed to classify software modules 

into defective and non-defective categories using 

ensemble machine learning algorithms. As shown in 

Figure 1, the architecture integrates multiple techniques 

that support experimental framework of the SDP model.  

 
Figure 1: General architecture of Software defect prediction 



Bahiru Shifaw and Dita Abdujebar                                                                           Ethiop. J. Sci. Sustain. Dev., Vol. 13(1), 2026 

64 

The preprocessing phase includes data cleaning, data 

normalization using the Z-score method, dimensionality 

reduction through Correlation-Based Feature Selection 

(CFS), Sequential Forward Selection (SFS), and 

Correlation Filtering (CO), as well as data class 

balancing using the Synthetic Minority Oversampling 

Technique (SMOTE). CFS and CO are categorized 

under filtering methods while SFS is among wrapper 

methods used in data preprocessing steps of machine 

learning classifier. Hence, SFS was used with all the 

selected ensemble learning algorithms as well as with 

other selected base classifier in the study. CO feature 

selection technique uses brute force methods which can 

be implemented in terms of different threshold (0.7, 0.8, 

and 0.9) points which are experimented to extract 

substantial features. Feature selection techniques were 

applied to choose relevant set of attributes for enhancing 

prediction power of classifier algorithms and to 

minimize over fitting. 

Ensemble learning algorithms such as AdaBoost, 

GB, XGBoost, RF, ET, Bagging, and Stacking are 

employed in the study. Furthermore, base classifiers 

including Support Vector Machine (SVM), Naive 

Bayes, Decision Tree, and K-Nearest Neighbor (KNN) 

are utilized. All the ensemble and base learning 

algorithms mentioned above are used to construct 

predictive models capable of identifying and classifying 

software modules as defective or non-defective.  

The predictive performance of each model is 

assessed using standard performance evaluation 

metrics, namely, accuracy, recall, precision, F-measure, 

and Area under ROC curve (AUC) and the model 

demonstrating the highest accuracy and generalization 

capability was declared as the optimal one.  

2.3 Hyper-performance optimization 

Hyper-parameter tuning is the process of searching 

for and identifying the optimal parameter values of 

machine learning models to enhance their performance. 

Various hyper-parameter optimization techniques exist, 

including grid search, random search, genetic 

algorithms, and differential evolution. In software 

defect prediction, grid search, which systematically 

explores all possible combinations of parameter values 

within a defined search space, is often used (Mohammed 

& Kora, 2023). The search space consists of a set of 

hyper-parameters and their corresponding candidate 

values. For each combination, the grid search algorithm 

builds and evaluates a model, and the hyper-parameter 

values that yield the best-performing model are returned 

as the optimal settings. In this study, the hyper-

parameters summarized in Table 2 were applied across 

the five datasets to obtain reliable and generalizable 

results. 

3. Results and Discussion 

3.1 Data preprocessing  

All selected dataset features were normalized within 

the range of –3.00 to 3.00. As shown in Table 3, 

increasing the number of threshold points positively 

affected the model performance. The table summarizes 

the number of attributes selected by various feature 

selection methods. The datasets employed in this study 

suffer from class imbalance, causing the majority class 

to dominate the minority class during the machine 

learning training process. To address this issue, SMOTE 

was implemented to balance the dataset by 

oversampling the minority class instances. 

 

Table 2: Hyper-parameters used for best performance ensemble learning (ET Approach) 
 

 

 

 

 

 

 

 

 

Hyper-parameter 

name 

Description value Optimized value  

range 
n_estimators Number of trees in the forest [10,50,200,300,400] 

 max_depth  Maximum depth of the tree. [70,80,90] 

 min_samples_leaf  Minimum number of samples at a leaf node [0.0001,1, 2] ['gini', 

'entropy'] 

 
criterion Measure the quality of a split. ['gini', 'entropy'] 

 max_features  

 

max number of features used for splitting a node ['auto', 'sqrt','log2'] 

 min_samples_split 

 

Minimum number of samples before the node is split [2,3,5] 
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Table 3: The number of selected attributes for each algorithms in model building 

Datasets CFS 
CO (threshold)  Ensemble learning algorithm 

0.7 0.8 0.9 RF  ET  GB  XGBoost  BET  AE

T  

SDF  

EQ  17 14 26 39  11 7 47 7 16 7 9 

JDT  12 16 27 45  31 5 50 12 23 26 6 

LC  7 26 34 47  9 15 19 9 10 6 23 

ML  16 24 34 47  34 26 47 18 14 38 15 

PDE  15 20 28 45  11 20 30 16 13 28 15 

BET: Bagging with Extra tree base learner, AET: Adaptive boosting with Extra tree base learner,  

SDF: Stacking by default final Meta learner with base weak learner (ET, RF and DT) 

 

Figure 2 shows the sizes of both defective and non-

defective classes for each of the five datasets, before and 

after data balancing. Before balancing, the dataset 

contained 4,518 non-defective and 853 defective 

modules, making a total of 5,371 instances. After 

applying the balancing technique, the total number of 

instances increased to 9,036, consisting of 4,518 non-

defective and 4,518 defective modules. Specifically, the 

datasets EQ, JDT, LC, ML, and PDE contained 324, 

791, 627, 1,617, and 1,288 non-defective modules, 

respectively, along with 129, 206, 64, 245, and 209 

defective modules before balancing. After balancing, 

each dataset contained an equal number of defective and 

non-defective modules. 

3.2 Performance prediction of the ensemble 

learning algorithms 

The experimental results of the selected ensemble 

learning algorithms with the implementation of the 

feature selection techniques are depicted in Table 4.  

 
Figure 2: Size and class categories of datasets before and after balancing using SMOTE 
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Table 4: Accuracy result of the ensemble learning algorithms with the feature selection techniques 

Algorithm Datasets CFS CO (threshold) SFS 
0.7 

 

0.8 0.9 

Random Forest 

(RF) 

EQ 0.903 0.915 

 

0.915 0.913 

 

0.944 

JDT 0.927 0.946 

 

0.961 0.959 

 

0.961 

LC 0.918 0.978 

 

0.98 0.984 

 

0.980 

ML 0.927 0.972 0.976 0.975 0.975 

PDE 0.949 0.966 0.971 0.975 0.963 

Extra Tree (ET) 

EQ 0.89 0.905 

 

0.931 0.915 

 

0.936 

JDT 0.937 0.958 

 

0.963 0.97 

 

0.963 

LC 0.927 0.994 

 

0.992 0.989 

 

0.988 

ML 0.93 0.977 

 

0.982 0.982 

 

0.982 

PDE 0.952 0.972 

0.972 

0.972 

0.972 

0.972 

0.972 

 

0.978 0.982 

 

0.974 

Gradient Boosting 

(GB) 

EQ 0.897 0.879 

 

0.91 0.91 

 

 

0.923 

JDT 0.894 0.922 

 

0.936 0.947 

 

0.951 

LC 0.887 0.979 

 

0.975 0.976 

 

0.961 

ML 0.867 0.925 

 

0.935 0.939 

 

0.932 

PDE 0.847 0.923 

 

0.926 0.937 0.932 

Extreme Gradient 

Boosting 

(XGBoost) 

EQ 0.905 0.923 

 

0.908 0.905 

 

0.928 

JDT 0.924 0.955 

 

0.965 0.967 

 

0.963 

LC 0.91 0.982 

 

0.982 0.979 

 

0.978 

ML 0.921 0.973 

 

0.973 0.976 

 

0.972 

PDE 0.929 0.965 

 

0.97 0.97 

 

0.97 

Bagging of ET base 

learner 

EQ 0.887 0.903 

 

0.913 0.918 

 

0.928 

JDT 0.934 0.948 

 

0.96 0.965 

 

0.958 

LC 0.919 0.99 

 

0.99 0.987 

 

0.977 

ML 0.926 0.975 

 

0.981 0.981 

 

0.975 

PDE 0.946 0.969 

 

0.978 0.98 

 

0.969 

AdaBoost of ET 

base learner 

EQ 0.882 0.903 

 

0.918 0.918 

 

0.954 

JDT 0.93 0.958 

 

0.965 0.966 0.966 

LC 0.923 0.992 

 

0.991 0.99 

 

0.97 

ML 0.931 0.979 

 

0.979 0.981 

 

0.973 

PDE 0.953 0.972 

 

0.981 0.981 

 

0.983 

Stacking of ET, RF 

and DT on base 

learner and default 

final estimator 

EQ 0.903 0.905 0.918 0.908 0.933 

JDT 0.933 0.958 0.962 0.962 0.958 

LC 0.923 0.989 0.989 0.989 0.988 

ML 0.93 0.977 0.984 0.984 0.977 

PDE 0.953 0.974 0.981 0.981 0.966 

For the Random Forest and Extra Trees algorithms, 

the Correlation Filter (CO) feature selection technique 

yielded better performance across all datasets except 

EQ. The SFS technique also demonstrated good 

performance on the EQ, JDT, and LC datasets. In the 

Gradient Boosting experiments, the SFS technique 

achieved superior performance on three datasets, 

namely, EQ, JDT, and PDE, while the CO technique 

performed well on the LC and ML models. For the 

Extreme Gradient Boosting algorithm, the CO feature 

selection method produced better results across all 

datasets except EQ, where SFS again performed well on 

EQ and PDE. All four ensemble learning algorithms 
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employed the Decision Tree (DT) as their base 

classifier. 

The remaining ensemble learning algorithms, 

Bagging, AdaBoost, and Stacking, utilized different 

base learners, including SVM, NB, DT, and KNN, 

among which the DT algorithm demonstrated superior 

performance. Both Bagging and AdaBoost employed 

the ET classifier as the base learner under different 

feature selection settings. In the Bagging experimental 

setup, the CO feature selection technique yielded better 

performance across all datasets except EQ, while the 

SFS technique performed well only on the EQ dataset. 

In contrast, for the AdaBoost experiments, the SFS 

technique showed better performance on the EQ, JDT, 

and PDE datasets, whereas the CO technique performed 

well only on the LC and ML datasets. For the Stacking 

experiments, where ET, RF, and DT were used as base 

learners with a default final estimator integrated with 

each feature selection technique, the CO method again 

produced better performance across all datasets except 

EQ. However, the SFS technique demonstrated good 

performance only on the EQ dataset. 

Table 5 presents the performance comparison of 

three feature selection techniques, including the three 

CO threshold values, combined with seven ensemble 

machine learning algorithms across the five datasets. 

The results indicate that the CO feature selection 

technique achieved best performance compared to both 

SFS and CFS, with a 0.9 threshold value. The SFS 

technique also demonstrated good performance on some 

datasets. 

Table 5: Performance values of all the ensembles learning algorithms 

Datasets 
Performance 

metrics 

Ensemble Learning Algorithm  

RF ET GB XGBoost BET AET SDF 

EQ  

Accuracy  0.913 

 

0.915 

 

0.91 

 

0.905 

 

0.918 

 

0.918 0.908 

AUC 0.972 

 

0.983 

 

0.951 

 

0.958 

 

0.976 

 

0.983 0.982 

F1-Measure 0.915 

 

0.918 

 

0.909 

 

0.906 

 

0.920 

 

0.920 0.908 

Precision  0.900 

 

0.900 

 

0.900 

 

0.889 

 

0.897 

 

0.898 0.902 

Recall  0.934 

 

0.952 

 

0.916 

 

0.927 

 

0.948 

 

0.947 0.944 

JDT  

Accuracy  0.959 

 

0.970 

 

0.947 

 

0.967 

 

0.965 

 

0.966 0.962 

AUC  0.994 

 

0.996 

 

0.985 

 

0.990 

 

0.995 

 

0.996 0.995 

F1-Measure  0.959 

 

0.97 

 

0.946 

 

0.967 

 

0.966 

 

0.965 0.962 

Precision  0.961 

 

0.962 

 

0.959 

 

0.964 

 

0.958 

 

0.957 0.961 

Recall  0.957 

 

0.979 

 

0.935 

 

0.971 

 

0.974 

 

0.974 0.964 

LC  

Accuracy  0.984 

 

0.989 

 

0.976 

 

0.979 

 

0.987 

 

0.99 0.989 

AUC  0.999 

 

1.000 

 

0.995 

 

0.998 

 

0.999 

 

1.000 0.999 

F1-Measure  0.984 

 

0.989 

 

0.976 

 

0.979 

 

0.987 

 

0.991 0.989 

Precision  0.983 

 

0.987 

 

0.979 

 

0.974 

 

0.984 

 

0.987 0.990 

Recall  0.986 

 

0.998 

 

0.973 

 

0.985 

 

0.990 

 

0.995 0.987 

ML  

Accuracy  0.975 

 

0.982 

 

0.939 

 

0.976 

 

0.981 

 

0.981 0.984 

AUC  0.996 

 

0.997 

 

0.984 

 

0.995 

 

0.998 

 

0.996 0.997 

F1-Measure  0.975 

 

0.982 

 

0.939 

 

0.975 

 

0.981 

 

0.979 0.981 

Precision  0.974 

 

0.975 

 

0.932 

 

0.975 

 

0.973 

 

0.975 0.978 

Recall  0.976 

 

0.990 

 

0.947 

 

0.976 

 

0.990 

 

0.984 0.99 0 

PDE  

Accuracy  0.975 

 

0.982 

 

0.937 

 

0.970 

 

0.98 

 

0.981 0.981 

AUC  0.996 

 

0.999 

 

0.978 

 

0.995 

 

0.998 

 

0.999 0.999 

F1-Measure  0.974 

 

0.982 

 

0.937 

 

0.970 

 

0.980 

 

0.981 0.981 

Precision  0.975 

 

0.973 

 

0.933 

 

0.969 

 

0.972 

 

0.972 0.976 

Recall  0.974 

 

0.992 

 

0.941 

 

0.970 

 

0.989 

 

0.990 0.985 
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Further analysis of the CO feature selection 

technique across the seven ensemble algorithms was 

conducted to identify the best-performing ensemble 

learning models. Again, the CO method with a 0.9 

threshold outperformed the other CO threshold settings. 

The experimental results show that ET ensemble 

algorithm achieved the best performance on most 

datasets, followed by AdaBoost and Stacking, which 

ranked second and third, respectively. In contrast, GB 

ensemble algorithm exhibited the lowest performance 

across all datasets. 

3.3 Hyper-parameter of the best algorithm  

As depicted in Table 6, hyper-parameters on the best 

performing ensemble learning model (ET approach) 

were further utilized to get the best performance of ET 

itself rather than taking default hyper-parameter. Here, 

Nested Cross Validation (10-fold Inner CV and 10-fold 

Outer CV) are applied. In other words, appropriate 

parameters on all five datasets are found using 

optimized value ranges with grid search algorithm 

where ET model resulted in the best output. Ten-fold 

inner loop CV and 10-fold outer loop CV are used 

during each iteration in order to the algorithm choose 

different combinations of the features from 5 * 3* 3 * 3 

* 3 * 3 = 1,215 settings. In Table 6, results of all metrics 

of best hyper-parameters and default hyper-parameter 

are displayed with all datasets for the best algorithm.

 

Table 6: Software defect prediction using new deep forest (DPDF) (Zhou et al., 2019) and best performing 

ensemble learning (ET with best and default hyper-parameters) 

Dataset 
Performance 

Metrics 

Hyper-parameter of ET 
DPDF Best hyper-parameters 

Best Default 

EQ 

Accuracy 0.926 

 

0.915 

 

0.78 

criterion='gini',max_depth=90,min_samples_

leaf=1,min_samples_split=5,max_features='l

og2',n_estimators=10 

AUC 0.970 

 

0.983 

 

0.85 

F1-Measure 0.928 

 

0.918 

 

0.75 

Precision 0.906 

 

0.900 

 

0.70 

Recall 0.954 

 

0.952 

 

0.81 

JDT 

Accuracy 0.973 

 

0.970 

 

0.85 

criterion='gini',max_depth=70,min_samples_

leaf=1,n_estimators=300 

AUC 0.997 

 

0.996 

 

0.86 

F1-Measure 0.973 

 

0.970 

 

0.56 

Precision 0.968 

 

0.962 

 

0.72 

Recall 0.979 

 

0.979 

 

0.46 

LC 

Accuracy 0.991 

 

0.989 

 

0.93 

criterion='gini',max_depth=70,min_samples_

leaf=1,n_estimators=300 

AUC 1.000 

 

 

1.000 

 

0.82 

F1-Measure 0.991 

 

 

0.989 

 

0.37 

Precision 0.985 

 

 

0.987 

 

0.81 

Recall 0.998 

 

 

0.998 

 

0.24 

ML 

Accuracy 0.982 

 

 

0.982 

 

0.87 

criterion='entropy',max_depth=80,max_featu

res='log2',min_samples_leaf=1,n_estimators

=400 

AUC 0.997 

 

0.997 

 

0.82 

F1-Measure 0.983 

 

0.982 

 

0.26 

Precision 0.975 

 

0.975 

 

0.47 

Recall 0.991 

 

0.990 

 

0.18 

PDE 

Accuracy 0.985 

 

0.982 

 

0.87 

criterion='gini',max_depth=70,max_features

='log2',min_samples_leaf=1,n_estimators=20

0  

AUC 0.999 

 

0.999 

 

0.77 

F1-Measure 0.985 

 

0.982 

 

0.31 

Precision 0.979 

 

0.973 

 

0.59 

Recall 0.991 

 

0.992 

 

0.21 
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4. Conclusions  

The goal of this research was to improve the 

performance of software defect prediction models, 

which has typically ranged between 70% and 90% in 

previous studies. To achieve this, five AEEEM datasets 

were used. Several preprocessing steps were performed 

to prepare suitable datasets for the selected algorithms. 

Z-score normalization was applied to reduce the effect 

of outliers, followed by feature selection and class 

balancing techniques to address high feature 

dimensionality and class imbalance, respectively. 

Finally, hyper-parameter optimization was conducted 

on the best-performing ensemble model to ensure 

reliable and generalizable findings. 

The results show that the combination of the ET 

ensemble learning algorithm with CO feature selection 

and SMOTE-based data balancing achieved superior 

performance compared to previous studies across all 

five AEEEM datasets. All models developed in this 

study obtained accuracy values exceeding 90%, a level 

not achieved in earlier works. This improvement can be 

attributed partly to the normalization, SMOTE, and 

filtering techniques applied during data preprocessing, 

and partly to the use of grid search with nested cross-

validation for hyper-parameter optimization of the ET 

algorithm, which was identified as the best-performing 

ensemble model through 10-fold cross-validation. 

Overall, integrating ensemble learning algorithms 

with feature filtering mechanisms, data balancing 

techniques, and 10-fold resampling evaluation 

significantly enhanced the predictive accuracy of the 

software defect models used in this study. Nevertheless, 

future work should consider developing software defect 

prediction models using deep learning algorithms, 

which may further improve prediction accuracy. 

Software companies are also encouraged to prepare and 

release more software system datasets to support 

ongoing research in defect prediction. Additionally, 

conducting experiments on both private and publicly 

available datasets using alternative class balancing and 

feature selection methods may further strengthen 

software defect prediction performance. 
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