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 Urban vehicle emission modeling has traditionally relied on conventional regression methods 

that inadequately capture complex non-linear interactions among influencing variables. 

Moreover, the combined influence of fleet composition and local environmental conditions 

remains poorly understood. This study integrated COPERT-derived baseline passenger vehicle 

(PV) emission factors with an Artificial Neural Network (ANN) model to predict Addis Ababa’s 

city-specific PV emission levels. The framework also employed Polynomial Linear Regression 

(PLR) model to forecast PV fleet growth between 2005 and 2025 and to evaluate the associated 

environmental impacts from 2018 to 2025. The models utilized climate data, vehicle activity 

patterns, and PV registration records as key inputs. Results reveal that PV ownership in Addis 

Ababa has increased more than twentyfold over the past two decades. Baseline emission 

factors indicated substantial reductions in CO and NOx emissions with higher Euro 

classification levels, although CO2 emissions remain persistently high. The ANN-based 

predictions show a 25% increase in CO2 emissions, while NOx emissions rose from 1.89 to 

2.08 tons/year for gasoline and from 6.02 to 7.27 tons/year for diesel PVs. CO emissions 

peaked at 26.25 tons/year in 2021 before declining to 21.10 tons/year by 2025, following the 

ban on internal combustion engine PVs. The ANN model achieved high predictive accuracy, 

with R² values ranging from 0.96 to 0.99. Overall, the integrated COPERT–ANN framework 

offers a robust, data-driven approach for urban emission prediction, providing valuable 

insights to guide sustainable transport planning and emission mitigation in rapidly growing 

cities. 
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1. Introduction 

The transport sector contributes significantly to air 

pollutants such as carbon monoxide (CO), nitrogen 

oxides (NOx), and particulate matter (PM), which 

adversely affect air quality and human health (Da Silva 

Marques et al., 2021; Dejene et al., 2019). Particularly, 

urban transport emissions have become a major 

environmental challenge in developing countries due to 

rapid vehicle growth, aging fleets, and poor traffic 

management. The European Environment Agency 

emphasizes that compliance with progressive vehicle 
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emission standards (Euro 1–6) is crucial for reducing 

such impacts (Singh et al., 2023). 

The Ethiopian government has pledged to reduce 

national greenhouse gas (GHG) emissions by improving 

transport efficiency and promoting low-emission 

vehicles (Wang-Helmreich & Mersmann, 2018). 

However, over the past two decades, Addis Ababa has 

experienced a sharp increase in motorization, with a 

fleet composed mainly of buses, commercial vehicles, 

passenger vehicles, and a growing number of 
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motorbikes. Most of the cars are imported second-hand, 

often characterized by high emission factors and 

outdated technologies (Lencho et al., 2022). Studies 

revealed that, in Addis Ababa, vehicle exhaust gases are 

the dominant source of traffic-related air pollution, 

exacerbated by rapid urbanization and obsolete vehicle 

technology (Redi, 2024; Grutter, 2021).  

The non-linear dynamics of urban transport systems 

are often not adequately captured by conventional linear 

projection models used to estimate vehicle population 

growth. Artificial Neural Networks (ANNs), however, 

offer a powerful alternative due to their capacity to 

model non-linear relationships and learn from historical 

data (Haykin, 2009). ANN-based models have 

demonstrated superior predictive performance in 

emission and traffic studies, outperforming traditional 

regression techniques (Jaworski et al., 2019; Zhao et al., 

2019). ANNs are particularly effective in capturing 

complex interactions among vehicle activity, 

meteorological conditions, and fleet composition (Kuo 

et al., 2020; Zhang et al., 2020). 

Standardized drive cycles such as the Worldwide 

Harmonised Light Vehicles Test Cycle (WLTC) and its 

predecessor, the New European Driving Cycle (NEDC), 

are frequently used for emission certification and 

modeling. These test cycles, however, may not 

accurately represent traffic conditions in African cities, 

as they were developed based on driving patterns in 

other regions (Gruner & Marker, 2016). Thus, localized 

data that reflect real-world driving behavior are crucial 

for developing accurate vehicle emission inventories. In 

agreement with this, Liu et al. (2024) and Lovell & 

Parry (2024) demonstrated that default European 

emission factors may not reflect local traffic and 

environmental conditions in cities such as Addis Ababa. 

Similarly, Amanuel et al. (2021) highlighted the 

importance of developing Addis Ababa–specific driving 

cycles to account for real-world driving patterns and 

energy consumption characteristics. In response, the 

Addis Ababa Drive Cycle (AADC) was developed to 

reflect the city’s unique driving conditions (Amanuel, 

2022). Despite this progress, the AADC has not yet been 

incorporated into urban environmental planning or 

emission estimation frameworks. 

The Computer Programme to Calculate Emissions 

from Road Transport (COPERT) is one of the most 

widely used models globally for estimating vehicle 

emissions. According to Ntziachristos et al. (2009), 

COPERT estimates emissions of major pollutants, 

including CO2, CO, NOx, PM, and volatile organic 

compounds (VOCs), based on fuel type, vehicle 

activity, and operating conditions. It has proven to be an 

effective tool for evaluating passenger vehicle (PV) 

emissions and has been applied in numerous studies to 

assess emissions and fuel consumption under various 

policy and geographic contexts (Abdulraheem et al., 

2023; Ali et al., 2021; Obaid et al., 2021; Singh et al., 

2017). The accuracy of COPERT results depends 

heavily on the quality of input data, including vehicle 

fleet composition, mileage statistics, and emission 

factors. Customization and calibration to local driving 

and environmental conditions are therefore essential. To 

enhance inventory reliability, the incorporation of local 

emission factors and driving cycle data is particularly 

important in developing-country contexts, where default 

European parameters may not be appropriate (Tsanakas 

et al., 2020). 

According to Chindamo & Gadola (2018), 56.57% of 

Addis Ababa’s vehicles are diesel-powered, while the 

remainder use gasoline. Electric vehicles represent a 

very small share, although their number is gradually 

increasing. Despite increasing concern over vehicular 

emissions in the city, a comprehensive and locally 

calibrated emissions inventory has not been yet 

developed, underscoring a critical knowledge gap in 

understanding the city’s transport-related environmental 

impacts. Thus, understanding the current fleet 

composition is essential for developing an accurate 

emissions inventory and implementing targeted 

mitigation strategies. Furthermore, it is cructial to 

address the frequently lacking reliable data on future 

vehicle growth, which can be used in urban planning 

initiatives. 

Thus, in the present study, an integrated ANN-based 

passenger vehicle (PV) growth forecasting model was 

developed in combination with COPERT to estimate PV 

emissions for Addis Ababa from 2018 to 2025. To 

enhance the models accuracy and contextual relevance, 

the locally developed AADC was incorporated. The 

results are expected to provide actionable insights for 

environmental policymakers, urban planners, and public 

health authorities, while also offering a replicable 
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analytical framework for other rapidly motorizing cities 

confronting similar challenges in sustainable urban air 

quality management.  

2. Materials and Methods 

2.1 Study area description 

This study was conducted in Addis Ababa, the capital 

and largest city of Ethiopia, located between latitudes 

8°50′N and 9°06′N and longitudes 38°40′E and 38°50′E. 

The city covers an area of approximately 527 km² and 

lies at an elevation ranging from 2,200 to 3,000 m above 

sea level. Addis Ababa serves as the political, economic, 

and cultural center of the country and it serves as 

Africa's diplomatic and political hub, a symbolic capital 

for the continent, and the base for key organizations like 

the AU Commission. 

Vehicle flow in Addis Ababa is severely congested, 

leading to high levels of emissions, including CO, CO2, 

NOx, and PM, particularly during peak hours. The 

congestion is exacerbated by factors like a high number 

of old vehicles, especially minibuses, and is a significant 

contributor to fuel consumption and overall air pollution 

in the city. Moreover, limited emission control 

regulations have exacerbated vehicular pollution levels. 

The city’s rapidly growing urban population has 

intensified the demand for transport services, making 

passenger vehicles a dominant mode of urban mobility. 

Thus, the emission analysis of this study focused on 

passenger vehicles operating within the city boundaries.  

2.2 Data collection 

The COPERT and ANN models were utilized to 

estimate exhaust emissions from PVs within the city. 

Based on historical vehicle registration data, predictive 

models were also developed to forecast PV fleet growth. 

The key input parameters included vehicle fleet 

composition, Ethiopian fuel specifications, Addis 

Ababa’s climate data, vehicle activity patterns, 

technology classifications, and AADC.  

Data for the study were collected using a 

combination of primary and secondary sources. 

Secondary data, essential for developing the emission 

model based on the Addis Ababa driving cycle, were 

obtained from relevant authorities and offices. These 

included records on the number of vehicles by type, 

vehicle-specific parameters from the Addis Ababa 

Transport Authority, and historical vehicle data for the 

period 2005–2024. Document analysis was also 

conducted to identify vehicle categories, technology 

shares, and related characteristics. 

Before modeling, the collected datasets underwent 

rigorous preprocessing to ensure reliability and 

accuracy. Missing data were addressed using 

interpolation for short gaps, while outliers exceeding 

defined thresholds were adjusted to minimize the 

influence of erroneous entries. Inconsistent records 

were cross-checked against secondary sources, such as 

city transport reports and relevant literature, to verify 

their validity. These preprocessing steps collectively 

ensured that the dataset used for training and prediction 

was consistent, robust, and suitable for accurate 

modeling. 

Average weather data for Addis Ababa (2018–2025) 

were obtained from the Ethiopian Meteorological 

Service (Table 1), while fuel specifications (Table 2) 

were sourced from the Ethiopian Petroleum Enterprise. 

Table 1: Environmental data of Addis Ababa 

Month 
Min Temp. 

(℃) 

Max Temp. 

(℃) 

Humidity 

(%) 

Jan. 9.7 20.5 50.0 

Feb. 11.9 22.3 59.0 

Mar. 12.5 21.2 53.0 

Apr. 13.5 21.5 66.0 

May 13.1 22.2 71.0 

June 13.5 20.3 78.0 

July 12.1 19.9 82.0 

Aug. 11.5 19.6 82.0 

Sep. 11.2 20.7 82.0 

Oct. 9.8 21.0 54.0 

Nov. 9.4 20.9 57.0 

Dec. 9.6 21.2 52.0 

Primary data were gathered through quantitative, 

self-administered questionnaires distributed to vehicle 

drivers and owners to assess daily, monthly, and annual 

vehicle activity. A sample size of 416 was determined 

using the population proportion formula (Equation 1) 

with a 95% confidence level and a 5% margin of error. 

A total of 400 valid responses were received, providing 

comprehensive information on passenger car usage 

patterns and enabling the estimation of typical vehicle 

activity levels necessary for energy consumption and 

emission calculations. 
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Table 2: Fuel specifications of Addis Ababa 

Parameters Petrol Diesel 

Energy Content (MJ/kg) 43.774 42.695 

H:C Ratio 1.86 1.86 

O:C Ratio  - - 

Density (kg/m3) 720-740 820-860. 

S Content (% wt) Max. 0.05 Max 0.05 

Pb Content (g/l) Max. 0.013 Not specified 

Cd Content (ppm wt) 0.0002 0.00005 

Cu Content (ppm wt) 0.0045 0.0057 

Cr Content (ppm wt) 0.0063 0.0085 

Ni Content (ppm wt) 0.0023 0.0002 

Se Content (ppm wt) 0.0002 0.0001 

Zn Content (ppm wt) 0.033 0.018 

Hg Content (ppm wt) 0.0087 0.0053 

As Content (% wt) Not specified Max. 0.01 

RON/ Cetane index Min. 92 Min. 48 

Observations, interviews, and document analysis on 

vehicle activity patterns complemented the random 

sampling of drivers. 

𝑛 =
(𝑍

𝛼

2
)2×𝑃×(1−𝑃)

𝑑2
                                             (1) 

where: n = required sample sizes, Zα/2 = 95% 

(confidence level, Z = 1.96), d = margin of error, and p 

= proportion of vehicles attending daily activities (0.56). 

Based on survey responses, the average daily travel 

distance for small PVs, typically compact cars used for 

short-distance travel and personal commuting, was 60 

km. Medium PVs, often station wagons or mid-size 

sedans used for both private and public transport, 

averaged 80 km/day. Large (executive) passenger cars, 

commonly used for long-distance travel and business or 

governmental purposes, recorded a daily average of 100 

km. 

2.3 Passenger Vehicle growth prediction 

This study predicted PVs growth in Addis Ababa 

from 2005 to 2030 by using ANN and a Predictive 

Linear Regression (PLR) models. The projections were 

based on historical data for registered passenger 

vehicles in Addis Ababa, obtained from official 

government records. This dataset included annual 

vehicle registration counts categorized by fuel type, 

vehicle class, and technology share. The predictors used 

in the models included Addis Ababa’s population, GDP 

per capita, and time (year) (Table 3). 

The ANN model was developed using a Multilayer 

Perceptron (MLP) architecture (Figure 1). The 

modeling process began with data cleaning and 

visualization, followed by the random division of the 

dataset into training (70%), validation (15%), and 

testing (15%) subsets. The iterative development 

process (Figure 2), required continuous monitoring and 

adjustment to achieve optimal predictive performance. 

Table 3: Values of predictors for each considered year 

Year Population 
GDP Per 

Capita (USD) 
Year Population 

GDP Per 

Capita (USD) 

2005 2,634,000 181.49 2018   4,400,000 839.86 

2006 2,689,000 218.64 2019   4,592,000 948.85 

2007 2,750,000 266.89 2020   4,794,000 969.01 

2008 2,871,000 350.57 2021   5,228,000 947.10 

2009 2,996,000 373.20 2022   5,461,000  1142.93 

2010 3,126,000 341.10 2023   5,704,000 1511.36 

2011 3,263,000 377.69 2024   5,461,000 1320.16 

2012 3,405,000 510.54 2025   5,957,000 1066.36 

2013 3,554,000 548.87 2026   6,221,491 1240.49 

2014 3,709,000 622.59 2027   6,497,725  1400.70 

2015 3,871,000 707.98 2028   6,786,224  1577.53 

2016 4,040,000 790.79 2029   7,087,532  1758.49 

2017 4,216,000 822.70 2030   7,402,219  1952.45 
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Figure 1: Diagram of MLP-based ANN prediction model 

 
Figure 2: The passenger vehicles prediction process 

The ANN model development followed the steps 

outlined below: 

1) Creating a command-line script and specify the 

target series. 

2) Selecting an appropriate training algorithm. 

3) Randomly dividing the data into training (70%), 

validation (15%), and testing (15%) subsets. 

4) Adjusting the feedback delays and hidden layer 

units through a trial-and-error process. 

5) Evaluating the final neural network 

performance. 

Model performance was assessed using multiple 

statistical indicators, including the time-series response 

plot, Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), Mean Absolute Percentage Error 

(MAPE), and the coefficient of determination (R²). The 

best-performing model was then applied to forecast 

passenger vehicle growth up to 2030, providing critical 

insights to support urban transportation planning and 

environmental impact assessment in Addis Ababa. 

2.4 Baseline PV emissions factor determination 

The COPERT approach was employed in this study 

to estimate emissions and fuel consumption (FC) from 

PVs by accounting for hot, cold-start, and evaporative 

emissions. The collected data were entered into the 

COPERT model after incorporating the necessary 

climatic data for Addis Ababa and the average distance 

traveled by each vehicle category. The model was then 

used to quantify three major pollutant emissions from 

PVs over the study period, categorized by vehicle type. 

Registered Vehicles 

ANN Prediction 

Model 
PLR Prediction 

Model 

Errors Errors 

Selecting Best Prediction Model 

Predicting Over Planning Horizon 
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Among these, the three most dominant pollutants, 

namely CO2, CO, and NOx, pose significant risks to both 

the environment and public health. In this study, 

COPERT version 5.6.1 was applied to estimate emission 

levels based on vehicle category. The emissions of 

different vehicle types were computed in tons per year 

using Equations (2) – (5) (Ntziachristos et al., 2009). 

Cold start emissions (Ecold) was determined by 

equations (2) and (3). 

𝐸𝑐𝑜𝑙𝑑 = 𝛽 ∗ 𝑏𝑐 ∗ 𝑁 ∗ 𝑀 ∗ 𝑒ℎ𝑜𝑡 ∗ (
𝑒𝑐𝑜𝑙𝑑

𝑒ℎ𝑜𝑡
− 1)     (2) 

𝑒𝑐𝑜𝑙𝑑

𝑒ℎ𝑜𝑡
= 𝐴 ∗ 𝑉 + 𝐵 ∗ 𝑇 + 𝐶                                (3) 

where β is the fraction of distance driven in cold engine 

mode, bc is the beta reduction factor, N is the number of 

vehicles in stock, M is distance travelled per vehicle, ehot 

is the hot emission factor, ecold/ehot is over-emission level 

compared to hot emissions, V is vehicle velocity in km/h 

and T is the temperature in oC. 

Hot emissions (Ehot) were calculated using Equation 

(4) and expressed as the total km driven by vehicles 

during the time considered for a given activity level 

(NM). 

𝐸ℎ𝑜𝑡 = 𝑁𝑀 × 𝑒ℎ𝑜𝑡                                      (4) 

COPERT takes into account evaporation from 

diurnal fuel losses (Ediurnal), after-use (Esoak), and running 

losses (Erunning), as shown in Equation (5). 

𝐸𝑒𝑣𝑎𝑝 = 𝐸𝑑𝑖𝑢𝑟𝑛𝑎𝑙 + 𝐸𝑠𝑜𝑎𝑘 + 𝑅𝑟𝑢𝑛𝑛𝑖𝑛𝑔             (5) 

2.5 PV Emissions estimation 

The hybrid modeling approach integrates the 

COPERT and ANN models to estimate PV emissions. 

Baseline emission factors were derived using the 

COPERT model based on PV and fuel type, as described 

earlier. These emission factors were subsequently used 

as input features for the artificial neural network (ANN) 

model, which was trained to predict Addis Ababa–

specific PV emission levels under the conditions 

represented by the AADC. The integration of COPERT 

and ANN combines empirically derived emission 

factors with data-driven prediction capabilities, 

enhancing the robustness of the emission estimates.  

2.6 Model performance evaluation 

While the hybrid COPERT–ANN approach 

enhances prediction accuracy, it also has certain 

limitations. The COPERT model may not fully capture 

local fleet heterogeneity or variations in road conditions, 

and the ANN predictions are influenced by the quality 

and completeness of the training data. In addition, 

uncertainties in emission factors and drive cycle 

representation may affect the model’s performance. 

Therefore, to ensure the reliability of the predictions, the 

model was validated using a combination of a 70–30% 

train–test split and cross-validation techniques. 

Moreover, the model performance was enhanced 

through calibration with localized parameters to 

improve prediction accuracy. 

3. Results and Discussion 

3.1 Existing passenger vehicles data 

The total number of registered gasoline and diesel 

PVs in Addis Ababa is presented in Figure 3. The 

dataset includes only vehicles officially registered with 

the city’s transport authority, excluding unregistered 

vehicles and those powered by alternative fuels such as 

electric or hybrid vehicles. Between 2005 and 2024, the 

number of registered PVs in Addis Ababa increased 

sharply, as illustrated in Figure 3, with notable 

implications for air quality, traffic management, and 

urban planning. Over this two-decade period, the total 

number of registered PVs expanded more than 

twentyfold, from 15,232 in 2005 to 312,372 in 2024. 

Following the Ethiopian government’s ban on the 

importation of second-hand vehicles older than five 

years, the city’s automobile market began to show signs 

of saturation after 2021, suggesting that these regulatory 

measures have begun to take effect. Moreover, in 2024, 

the Ethiopian government introduced a ban on the 

importation of internal combustion engine PVs to 

encourage electric vehicle adoption and accelerate the 

transition toward sustainable transport systems. 
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Figure 3: Registered number of passenger vehicles in Addis Ababa based on fuel type 

3.2 Predicted passenger vehicle growth 

Figure 4 presents the historical and projected 

passenger car registrations in Addis Ababa from 2005 to 

2030, as estimated using ANN and PLR models. During 

the historical period (2005–2024), the ANN model 

demonstrated superior performance compared to the 

PLR model when evaluated against actual car 

registration data, effectively capturing the nonlinear 

growth trends and fluctuations. In contrast, the PLR 

model’s rigid linear structure led to noticeable 

deviations from the observed data during periods of 

irregular growth. These results indicate that the ANN 

model provides higher forecasting accuracy and greater 

adaptability to the complex dynamics of urban vehicle 

growth. 

Both models predict continued growth in PV 

registrations between 2025 and 2030; however, the PLR 

model anticipates a steeper increase, likely due to its 

inherent linear assumptions and reliance on historical 

data patterns. Overall, the ANN model appears more 

suitable for forecasting in dynamic, data-driven urban 

environments, whereas the PLR model may serve 

complementary purposes in long-term trend analysis 

and policy planning. 

Table 4 compares the prediction performance metrics 

of the ANN and PLR models. The mean error of the 

ANN model is –132.025, while that of the PLR model 

is 71.164. The Mean Absolute Error (MAE) is 

considerably lower in the ANN model (362.024) than in 

the PLR model (882.502). Similarly, the standard 

deviation of prediction errors, reflecting consistency 

and variability in predictive performance, is 

substantially smaller for the ANN model (591.391) 

compared to the PLR model (1123.423). Finally, the 

ANN model exhibits a higher correlation coefficient (R2 

= 0.992) between predicted and actual values than the 

PLR model (R2 = 0.970). Overall, the ANN model 

aligns more closely with the observed data trend, 

suggesting a more reliable representation of the 

underlying vehicle growth pattern, despite both models 

showing strong positive correlations. 

Table 4: Summary of prediction model errors 

Parameters 
ANN 

model 

PLR 

model 

Mean Error -132.025 71.164 

Mean Absolute Error  362.024 882.502 

Standard Deviation  591.391 1123.423 

Linear Correlation 0.992 0.97 
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Figure 4: Projected PV registrations in Addis Ababa from 2005 to 2030 

3.3 PV emission factors using the COPERT model 

The model estimated emission factors for key 

pollutants, including CO, NOₓ, and CO₂, which served 

as reference values representing the average emissions 

per kilometer for each PV class. The baseline factors 

provide a critical foundation for assessing the city’s 

vehicular emissions profile, enabling comparisons with 

model-based forecasts and supporting the calibration of 

subsequent machine learning (ANN) predictions 

tailored to local traffic and environmental conditions. 

3.3.1 CO emission factor 

CO emission factors for gasoline passenger vehicles 

(GPVs) consistently decreased with advancing Euro 

emission standards (Figure 5(a)). This trend shows a 

substantial reduction from Euro 1 to Euro 6 across all 

the three vehicle types. For example, small GPVs 

exhibited a marked decline in CO emission factors from 

5.6559 g/km under Euro 1 to 0.3449 g/km under Euro 6. 

Similar reductions were observed for medium and 

executive GPVs. The convergence of the values to 

0.3449 g/km for all vehicle sizes under Euro 6 

underscores the stringent emission limits imposed on 

manufacturers. On average, small GPVs recorded the 

highest CO emissions, followed by medium and then 

large GPVs. The relatively higher emissions of smaller 

vehicles in the earlier Euro stages can be attributed to 

less advanced emission control technologies. 

Additionally, a slight increase in CO levels from Euro 4 

to Euro 5 in some categories may reflect variations in 

real-world vehicle performance. 

For diesel passenger vehicles (DPVs), CO emission 

factors in Addis Ababa also exhibit a clear declining 

trend with successive Euro classifications, confirming 

the effectiveness of manufacturers’ CO-reduction 

strategies (Figure 5(b)). For instance, Euro 1 vehicles 

have an average CO emission factor of 0.6811 g/km, 

which sharply decreases to 0.0569 g/km for Euro 5-

compliant vehicles, largely due to improved fuel 

combustion efficiency and the adoption of advanced 

catalytic converter technologies. However, slightly 

elevated CO emissions in Euro 3 and Euro 4 DPVs may 

be attributed to factors such as lean-burn engine 

operation under urban driving conditions, discrepancies 

between test cycles and real-world performance, and the 

degradation of emission control systems over time. The 

average CO emission factor for all DPV categories in 

Addis Ababa is 0.3408 g/km, which remains relatively 

high compared to contemporary European city fleets. 

This suggests the continued operation of older Euro 1 

and Euro 2 DPVs (with emissions exceeding 0.59 g/km) 

contributes significantly to urban air pollution. 
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Figure 5: CO emissions factor of 9a) GPVs and (b) DPVs, in Addis Ababa 

3.3.2  CO2 emission factor 

As shown in Figure 6(a), the average CO2 emission 

factors are significantly high: 230.73, 273.73, and 

378.01 g/km for small, medium, and large GPVs, 

respectively. While stricter Euro regulations have 

successfully reduced pollutants like CO, HC, and NOx, 

their impact on CO2 emissions for GPVs has been 

minimal, with no consistent or noteworthy decrease 

across newer Euro standards (Euro 4-6). For instance, 

large (SUV) GPVs show a constant CO2 emission value 

of 404.64 g/km from Euro 4 to 6. This suggests that 

gains in combustion efficiency are often offset by 

increases in engine size, power demand, or vehicle 

weight, as CO2 emissions are directly tied to fuel 

consumption. The urban fleet's average CO2 emissions 

are significantly above current EU regulation standards, 

indicating a considerable carbon footprint. 

DPVs also show increased CO2 emissions in larger 

vehicle categories, with little variation across Euro 

standards for SUVs, as illustrated in Figure 6(b). While 

slight improvements in CO2 emissions are observed for 

small and medium-sized diesel cars from Euro 3 to 6, 

SUVs do not show significant improvement. This is 

likely because contemporary diesel engines prioritize 

the reduction of PM and NOx over CO2 management. 
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Figure 6: CO2 emissions factor of (a) GPVs and (b) DPVs, in Addis Ababa 

A key finding is the trade-off between CO and CO2 

emissions: while severe Euro requirements have led to a 

significant fall in CO emissions, CO2 reductions have 

plateaued or even grown, particularly in larger cars. This 

highlights a technical compromise where increased 

combustion efficiency reduces CO but not equally CO2, 

largely due to variations in fuel type and engine size. 

The high and constant CO2 emission levels from diesel 

SUVs pose a unique problem, despite their perception 

as more fuel-efficient. This underscores the urgent need 

for robust policy interventions, such as regulations 

addressing emissions related to engine displacement and 

weight, phase-outs of diesel vehicles, and the 

establishment of low-emission zones. 

3.3.3 NOx emission factor 

The NOx emission factors (g/km) of passenger cars 

that run on petrol are shown in Figure 7(a). As pollution 

rules were tightened over time, the data shows a 

noticeable and steady decline in NOx levels from Euro 

1 to Euro 6. The most significant decrease in NOx 

emissions, which is nearly 50% lower between Euro 2 

and Euro 3, shows how effective strict legal restrictions 

are. Improvements continue, albeit more slowly, after 

Euro 3. This indicates the necessity for hybrid or zero-

emission solutions for upcoming reductions and 

illustrates the declining returns from conventional 

technology. 
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Figure 7: NOx emissions factor of (a) GPVs and (b) DPVs, in Addis Ababa 

NOx emissions for passenger cars with diesel engines 

are shown in Figure 7(b). Diesel vehicles have much 

greater NOx emissions across all Euro criteria than their 

gasoline-powered counterparts. Despite a noticeable 

slowdown in NOx emissions starting with Euro 3, total 

levels are still high when compared to gasoline-powered 

vehicles. Diesel NOx levels are over four times higher 

than those of comparable gasoline-powered vehicles, 

even at Euro 6. These findings highlight the 

shortcomings of diesel pollution restrictions and support 

the case for cities like Addis Ababa to move away from 

fleets that run on diesel. 

3.4 Predicted PV emission levels using ANN  

The integration of COPERT-derived empirical data 

with ANN model enabled a more accurate estimation of 

emissions under Addis Ababa’s driving conditions. The 

results revealed that small PVs consistently exhibited 

lower emission levels across all Euro standards, 

reflecting improvements in fuel efficiency and emission 

control technologies. Medium PVs demonstrated 

moderate emission outputs, while large PVs recorded 

the highest emission levels, particularly in pre-Euro and 

Euro I categories. As the Euro standard advanced, a 

clear reduction in emissions was observed for all vehicle 

classes, highlighting the effectiveness of newer vehicle 

technologies and regulatory measures in mitigating 

vehicular pollution. The detailed annual prediction of 

PV emissions for CO, CO2 and NOx is presented in the 

below to show the trends quantitatively. 
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3.4.1. Annual CO emissions 

CO emissions from GPVs in Addis Ababa showed a 

clear trend, peaking at 26.25 tons/year in 2021, as shown 

in Figure 8(a). This surge was primarily attributed to the 

predominance of older Euro 1 to Euro 3 vehicles, which 

comprised over 43% of the fleet and significantly 

contributed to the total emissions. Following 2021, 

emissions declined, reaching 19.11 tons/year by 2023, 

and then slightly rose to 21.10 tons/year by 2025, even 

with consistent vehicle numbers. This decrease was 

largely influenced by the Ethiopian government's 2023 

ban on ICE PV imports and a progressive transition 

towards cleaner Euro 5 and Euro 6 vehicles, though the 

rate of fleet modernization remains insufficient to fully 

counteract the impact of older models.  

CO emissions from DPVs exhibited significant 

annual variation as shown in Figure 8(b), reaching a 

peak of 2.61 tons/year in 2021 before stabilizing around 

2.54 tons/year by 2025. Euro 2 DPVs were consistently 

the largest contributors, accounting for roughly half of 

the total annual CO emissions due to their substantial 

presence in the aging fleet. While Euro 4 emissions 

increased, their overall impact was less significant. 

Notably, emissions from Euro 6 vehicles demonstrated 

the largest relative growth, indicating a steady adoption 

of newer, cleaner diesel technology, despite their 

currently small overall contribution.  

 

 

Figure 8: Annual CO emissions from 2018 to 2025 of (a) GPV and (b) DPV 
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3.4.2. Annual CO2 emissions 

CO2 emissions from GPVs displayed a consistent 

upward trend (Figure 9(a)), increasing by ~25.2%. This 

increase was primarily driven by the rising number of 

older, high-emitting vehicles within the fleet. 

Specifically, Euro 2 GPVs consistently contributed the 

most to CO2 emissions (836-849 tons/year), reflecting 

their significant presence and cumulative impact. While 

newer Euro 4, Euro 5, and particularly Euro 6 vehicles 

showed increasing emissions, with Euro 6 experiencing 

the largest relative growth (more than tripling from 

105.72 to 322.50 tons/year), the overall rise highlights 

the cumulative effect of growing vehicle numbers 

despite the gradual adoption of cleaner standards. 

Figure 9(b) shows that total CO2 emissions from 

DPVs also increased, from 1,682.82 tons/year in 2018 

to 2,103.28 tons/year in 2025. Euro 2 DPVs remained 

the top contributors, indicating that older, high-emitting 

vehicles still form the majority of the urban diesel fleet. 

Although Euro 3 and Euro 4 vehicles also saw steady 

emission increases due to their growing proportion, and 

Euro 5 and Euro 6 vehicles exhibited significant relative 

growth (Euro 6 from 55.21 to 176.14 tons/year), their 

overall contribution remained comparatively low. This 

underscores that older and mid-aged DPVs continue to 

dominate total CO2 emissions, despite the market entry 

of cleaner technologies. 

 

 
Figure 9: Annual CO2 emissions from 2018 to 2025 of (a) GPV and (b) DPV 
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3.4.3. Annual NOx emissions 

In this study, NOx emissions from GPVs in Addis 

Ababa exhibited a gradual increase from 1.89 

tonnes/year in 2018 to 2.08 tonnes/year by 2025, as 

depicted in Figure 10(a), stabilizing around 2021. Euro 

2 vehicles were consistently the largest emitters, 

contributing 0.74 to 0.76 tonnes annually. While Euro 3 

and Euro 4 emissions showed slight rises and then 

plateaued, Euro 5 emissions also increased, despite 

these vehicles having better pollution controls, due to 

their growing numbers. The most notable relative rise 

was observed in Euro 6 vehicles, which, despite having 

the lowest emissions overall (0.02 to 0.05 tons/year), 

reflect the fleet's increasing adoption of more recent, 

low-emission technologies. 

Similarly, total NOx emissions from Diesel 

Passenger Vehicles (DPVs) consistently increased from 

6.02 tons/year in 2018 to 7.27 tons/year in 2025, 

peaking around 7.24 tons/year in 2021 before largely 

stabilizing as depicted in Figure 10(b). Euro 2 DPVs 

remained the primary source of NOx, contributing 1.81 

to 1.86 tonnes annually. Euro 3 and Euro 4 vehicles 

were also significant contributors, showing steady 

increases. Emissions from Euro 5 cars likewise rose, 

indicating that their larger fleet size resulted in a higher 

overall burden despite adherence to newer regulations. 

Euro 6 vehicles, though starting with the lowest 

contribution, demonstrated a significant relative 

increase in NOx emissions (from 0.16 to 0.50 tons/year), 

corresponding with their growing proportion in the 

market and reflecting the increasing presence of cleaner 

diesel technologies. 

 

 
Figure 10: Annual NOx emissions from 2018 to 2025 of (a) GPV and (b) DPV
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3.5 Performance of the ANN Model 

The performance of the ANN model in predicting 

Addis Ababa’s city-specific PV emissions was 

evaluated using standard statistical metrics, including 

R², MAE, and RMSE. The model demonstrated 

excellent predictive capability, with R² values ranging 

from 0.96 to 0.99 across CO, CO2, and NOx emissions 

for both gasoline- and diesel-powered vehicles. This 

indicates that the ANN model captured over 95% of the 

variance in the observed emissions data. The MAE 

values ranged from 0.05 to 0.38 tons/year, indicating a 

low average deviation between predicted and observed 

emissions, while RMSE values ranged from 0.08 to 0.55 

tons/year, confirming the model’s robustness and 

accuracy in capturing temporal variations across vehicle 

types, sizes, and Euro classification levels. Overall, the 

metrics validate the effectiveness of integrating 

COPERT-derived baseline emission factors with ANN 

modeling to reliably predict annual emissions for small, 

medium, and large PVs under Addis Ababa’s driving 

conditions. 

4. Conclusions  

This study combined COPERT-derived baseline 

emission factors with an ANN model to forecast Addis 

Ababa’s PV emissions, considering fleet growth across 

Euro classes. The ANN model outperformed the PLR 

model, accurately capturing PV growth (R = 0.992, 

MAE = 362 vehicles). Results show that PV numbers 

increased over twentyfold from 2005 to 2024, with older 

Euro 1–3 vehicles remaining dominant. 

Annual CO and NOₓ emissions from both gasoline 

and diesel-powered vehicles varied with fleet 

composition, while total CO2 emissions rose by about 

25% between 2018 and 2025. Euro 2 vehicles were the 

largest contributors to emissions, whereas Euro 6 

vehicles showed the highest relative growth, reflecting 

gradual adoption of cleaner technologies. 

Overall, the findings indicate that aging fleets are key 

sources of urban air pollution in Addis Ababa. 

Strengthening vehicle emission standards, promoting 

cleaner and electric vehicles, enhancing fuel quality, and 

improving public transport are critical to achieving 

sustainable mobility and air quality goals. Despite some 

limitations, such as simplified road condition 

representation and emission factor uncertainties, the 

proposed COPERT–ANN framework offers a robust 

tool for urban emission forecasting and policy analysis 

applicable to other Ethiopian cities. 
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