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Urban vehicle emission modeling has traditionally relied on conventional regression methods
that inadequately capture complex non-linear interactions among influencing variables.
Moreover, the combined influence of fleet composition and local environmental conditions
remains poorly understood. This study integrated COPERT-derived baseline passenger vehicle
(PV) emission factors with an Artificial Neural Network (ANN) model to predict Addis Ababa’s
city-specific PV emission levels. The framework also employed Polynomial Linear Regression
(PLR) model to forecast PV fleet growth between 2005 and 2025 and to evaluate the associated
environmental impacts from 2018 to 2025. The models utilized climate data, vehicle activity
patterns, and PV registration records as key inputs. Results reveal that PV ownership in Addis
Ababa has increased more than twentyfold over the past two decades. Baseline emission
factors indicated substantial reductions in CO and NOy emissions with higher Euro
classification levels, although CO, emissions remain persistently high. The ANN-based
predictions show a 25% increase in CO; emissions, while NOx emissions rose from 1.89 to
2.08 tons/year for gasoline and from 6.02 to 7.27 tons/year for diesel PVs. CO emissions
peaked at 26.25 tons/year in 2021 before declining to 21.10 tons/year by 2025, following the
ban on internal combustion engine PVs. The ANN model achieved high predictive accuracy,
with R2 values ranging from 0.96 to 0.99. Overall, the integrated COPERT—ANN framework
offers a robust, data-driven approach for urban emission prediction, providing valuable
insights to guide sustainable transport planning and emission mitigation in rapidly growing
cities.

1. Introduction

The transport sector contributes significantly to air
pollutants such as carbon monoxide (CO), nitrogen
oxides (NOy), and particulate matter (PM), which
adversely affect air quality and human health (Da Silva
Marques et al., 2021; Dejene et al., 2019). Particularly,
urban transport emissions have become a major
environmental challenge in developing countries due to
rapid vehicle growth, aging fleets, and poor traffic
management. The European Environment Agency
emphasizes that compliance with progressive vehicle
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emission standards (Euro 1-6) is crucial for reducing
such impacts (Singh et al., 2023).

The Ethiopian government has pledged to reduce
national greenhouse gas (GHG) emissions by improving
transport efficiency and promoting low-emission
vehicles (Wang-Helmreich & Mersmann, 2018).
However, over the past two decades, Addis Ababa has
experienced a sharp increase in motorization, with a
fleet composed mainly of buses, commercial vehicles,
passenger vehicles, and a growing number of
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motorbikes. Most of the cars are imported second-hand,
often characterized by high emission factors and
outdated technologies (Lencho et al., 2022). Studies
revealed that, in Addis Ababa, vehicle exhaust gases are
the dominant source of traffic-related air pollution,
exacerbated by rapid urbanization and obsolete vehicle
technology (Redi, 2024; Grutter, 2021).

The non-linear dynamics of urban transport systems
are often not adequately captured by conventional linear
projection models used to estimate vehicle population
growth. Artificial Neural Networks (ANNSs), however,
offer a powerful alternative due to their capacity to
model non-linear relationships and learn from historical
data (Haykin, 2009). ANN-based models have
demonstrated superior predictive performance in
emission and traffic studies, outperforming traditional
regression techniques (Jaworski et al., 2019; Zhao et al.,
2019). ANNs are particularly effective in capturing
complex interactions among vehicle activity,
meteorological conditions, and fleet composition (Kuo
et al., 2020; Zhang et al., 2020).

Standardized drive cycles such as the Worldwide
Harmonised Light Vehicles Test Cycle (WLTC) and its
predecessor, the New European Driving Cycle (NEDC),
are frequently used for emission certification and
modeling. These test cycles, however, may not
accurately represent traffic conditions in African cities,
as they were developed based on driving patterns in
other regions (Gruner & Marker, 2016). Thus, localized
data that reflect real-world driving behavior are crucial
for developing accurate vehicle emission inventories. In
agreement with this, Liu et al. (2024) and Lovell &
Parry (2024) demonstrated that default European
emission factors may not reflect local traffic and
environmental conditions in cities such as Addis Ababa.
Similarly, Amanuel et al. (2021) highlighted the
importance of developing Addis Ababa—specific driving
cycles to account for real-world driving patterns and
energy consumption characteristics. In response, the
Addis Ababa Drive Cycle (AADC) was developed to
reflect the city’s unique driving conditions (Amanuel,
2022). Despite this progress, the AADC has not yet been
incorporated into urban environmental planning or
emission estimation frameworks.

The Computer Programme to Calculate Emissions
from Road Transport (COPERT) is one of the most
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widely used models globally for estimating vehicle
emissions. According to Ntziachristos et al. (2009),
COPERT estimates emissions of major pollutants,
including CO,;, CO, NOy, PM, and volatile organic
compounds (VOCs), based on fuel type, vehicle
activity, and operating conditions. It has proven to be an
effective tool for evaluating passenger vehicle (PV)
emissions and has been applied in humerous studies to
assess emissions and fuel consumption under various
policy and geographic contexts (Abdulraheem et al.,
2023; Ali et al., 2021; Obaid et al., 2021; Singh et al.,
2017). The accuracy of COPERT results depends
heavily on the quality of input data, including vehicle
fleet composition, mileage statistics, and emission
factors. Customization and calibration to local driving
and environmental conditions are therefore essential. To
enhance inventory reliability, the incorporation of local
emission factors and driving cycle data is particularly
important in developing-country contexts, where default
European parameters may not be appropriate (Tsanakas
et al., 2020).

According to Chindamo & Gadola (2018), 56.57% of
Addis Ababa’s vehicles are diesel-powered, while the
remainder use gasoline. Electric vehicles represent a
very small share, although their number is gradually
increasing. Despite increasing concern over vehicular
emissions in the city, a comprehensive and locally
calibrated emissions inventory has not been yet
developed, underscoring a critical knowledge gap in
understanding the city’s transport-related environmental
impacts. Thus, understanding the current fleet
composition is essential for developing an accurate
emissions inventory and implementing targeted
mitigation strategies. Furthermore, it is cructial to
address the frequently lacking reliable data on future
vehicle growth, which can be used in urban planning
initiatives.

Thus, in the present study, an integrated ANN-based
passenger vehicle (PV) growth forecasting model was
developed in combination with COPERT to estimate PV
emissions for Addis Ababa from 2018 to 2025. To
enhance the models accuracy and contextual relevance,
the locally developed AADC was incorporated. The
results are expected to provide actionable insights for
environmental policymakers, urban planners, and public
health authorities, while also offering a replicable
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analytical framework for other rapidly motorizing cities
confronting similar challenges in sustainable urban air
guality management.

2. Materials and Methods
2.1 Study area description

This study was conducted in Addis Ababa, the capital
and largest city of Ethiopia, located between latitudes
8°50'N and 9°06'N and longitudes 38°40'E and 38°50'E.
The city covers an area of approximately 527 kmz2 and
lies at an elevation ranging from 2,200 to 3,000 m above
sea level. Addis Ababa serves as the political, economic,
and cultural center of the country and it serves as
Africa’s diplomatic and political hub, a symbolic capital
for the continent, and the base for key organizations like
the AU Commission.

Vehicle flow in Addis Ababa is severely congested,
leading to high levels of emissions, including CO, COg,
NOx, and PM, particularly during peak hours. The
congestion is exacerbated by factors like a high number
of old vehicles, especially minibuses, and is a significant
contributor to fuel consumption and overall air pollution
in the city. Moreover, limited emission control
regulations have exacerbated vehicular pollution levels.
The city’s rapidly growing urban population has
intensified the demand for transport services, making
passenger vehicles a dominant mode of urban mobility.
Thus, the emission analysis of this study focused on
passenger vehicles operating within the city boundaries.

2.2 Data collection

The COPERT and ANN models were utilized to
estimate exhaust emissions from PVs within the city.
Based on historical vehicle registration data, predictive
models were also developed to forecast PV fleet growth.
The key input parameters included vehicle fleet
composition, Ethiopian fuel specifications, Addis
Ababa’s climate data, vehicle activity patterns,
technology classifications, and AADC.

Data for the study were collected using a
combination of primary and secondary sources.
Secondary data, essential for developing the emission
model based on the Addis Ababa driving cycle, were
obtained from relevant authorities and offices. These
included records on the number of vehicles by type,
vehicle-specific parameters from the Addis Ababa
Transport Authority, and historical vehicle data for the
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period 2005-2024. Document analysis was also
conducted to identify vehicle categories, technology
shares, and related characteristics.

Before modeling, the collected datasets underwent
rigorous preprocessing to ensure reliability and
accuracy. Missing data were addressed using
interpolation for short gaps, while outliers exceeding
defined thresholds were adjusted to minimize the
influence of erroneous entries. Inconsistent records
were cross-checked against secondary sources, such as
city transport reports and relevant literature, to verify
their validity. These preprocessing steps collectively
ensured that the dataset used for training and prediction
was consistent, robust, and suitable for accurate
modeling.

Average weather data for Addis Ababa (2018-2025)
were obtained from the Ethiopian Meteorological
Service (Table 1), while fuel specifications (Table 2)
were sourced from the Ethiopian Petroleum Enterprise.

Table 1: Environmental data of Addis Ababa

Min Temp. Max Temp. Humidity
Month gy €0 (%)
Jan. 9.7 20.5 50.0
Feb. 11.9 22.3 59.0
Mar. 125 21.2 53.0
Apr. 135 215 66.0
May 13.1 22.2 71.0
June 135 20.3 78.0
July 12.1 19.9 82.0
Aug. 115 19.6 82.0
Sep. 11.2 20.7 82.0
Oct. 9.8 21.0 54.0
Nov. 9.4 20.9 57.0
Dec. 9.6 21.2 52.0

Primary data were gathered through quantitative,
self-administered questionnaires distributed to vehicle
drivers and owners to assess daily, monthly, and annual
vehicle activity. A sample size of 416 was determined
using the population proportion formula (Equation 1)
with a 95% confidence level and a 5% margin of error.
A total of 400 valid responses were received, providing
comprehensive information on passenger car usage
patterns and enabling the estimation of typical vehicle
activity levels necessary for energy consumption and
emission calculations.
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Table 2: Fuel specifications of Addis Ababa

Parameters Petrol Diesel
Energy Content (MJ/kg) 43.774 42.695
H:C Ratio 1.86 1.86
O:C Ratio - -
Density (kg/mq) 720-740 820-860.
S Content (% wt) Max. 0.05 Max 0.05
Pb Content (g/l) Max. 0.013 Not specified
Cd Content (ppm wt) 0.0002 0.00005
Cu Content (ppm wt) 0.0045 0.0057
Cr Content (ppm wt) 0.0063 0.0085
Ni Content (ppm wt) 0.0023 0.0002
Se Content (ppm wt) 0.0002 0.0001
Zn Content (ppm wt) 0.033 0.018
Hg Content (ppm wt) 0.0087 0.0053
As Content (% wt) Not specified Max. 0.01
RONY/ Cetane index Min. 92 Min. 48

Observations, interviews, and document analysis on
vehicle activity patterns complemented the random
sampling of drivers.

(23)?xPx(1-P)
- ez

1)
where: n = required sample sizes, Za/2 = 95%
(confidence level, Z = 1.96), d = margin of error, and p
= proportion of vehicles attending daily activities (0.56).

Based on survey responses, the average daily travel
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distance for small PVs, typically compact cars used for
short-distance travel and personal commuting, was 60
km. Medium PVs, often station wagons or mid-size
sedans used for both private and public transport,
averaged 80 km/day. Large (executive) passenger cars,
commonly used for long-distance travel and business or
governmental purposes, recorded a daily average of 100
km.

2.3 Passenger Vehicle growth prediction

This study predicted PVs growth in Addis Ababa
from 2005 to 2030 by using ANN and a Predictive
Linear Regression (PLR) models. The projections were
based on historical data for registered passenger
vehicles in Addis Ababa, obtained from official
government records. This dataset included annual
vehicle registration counts categorized by fuel type,
vehicle class, and technology share. The predictors used
in the models included Addis Ababa’s population, GDP
per capita, and time (year) (Table 3).

The ANN model was developed using a Multilayer
Perceptron (MLP) architecture (Figure 1). The
modeling process began with data cleaning and
visualization, followed by the random division of the
dataset into training (70%), validation (15%), and
testing (15%) subsets. The iterative development
process (Figure 2), required continuous monitoring and
adjustment to achieve optimal predictive performance.

Table 3: Values of predictors for each considered year

. GDP Per . GDP Per
Year Population Capita (USD) Year  Population Capita (USD)
2005 2,634,000 181.49 2018 4,400,000 839.86
2006 2,689,000 218.64 2019 4,592,000 948.85
2007 2,750,000 266.89 2020 4,794,000 969.01
2008 2,871,000 350.57 2021 5,228,000 947.10
2009 2,996,000 373.20 2022 5,461,000 1142.93
2010 3,126,000 341.10 2023 5,704,000 1511.36
2011 3,263,000 377.69 2024 5,461,000 1320.16
2012 3,405,000 510.54 2025 5,957,000 1066.36
2013 3,554,000 548.87 2026 6,221,491 1240.49
2014 3,709,000 622.59 2027 6,497,725 1400.70
2015 3,871,000 707.98 2028 6,786,224 1577.53
2016 4,040,000 790.79 2029 7,087,532 1758.49
2017 4,216,000 822.70 2030 7,402,219 1952.45
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Figure 1: Diagram of MLP-based ANN prediction model
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Figure 2: The passenger vehicles prediction process

The ANN model development followed the steps

outlined below:
1) Creating a command-line script and specify the

target series.
Selecting an appropriate training algorithm.
Randomly dividing the data into training (70%),
validation (15%), and testing (15%) subsets.
Adjusting the feedback delays and hidden layer
units through a trial-and-error process.
Evaluating the final neural
performance.

2)
3)

4)

5) network

Model performance was assessed using multiple
statistical indicators, including the time-series response
plot, Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Percentage Error
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(MAPE), and the coefficient of determination (R?). The
best-performing model was then applied to forecast
passenger vehicle growth up to 2030, providing critical
insights to support urban transportation planning and
environmental impact assessment in Addis Ababa.

2.4 Baseline PV emissions factor determination
The COPERT approach was employed in this study
to estimate emissions and fuel consumption (FC) from
PVs by accounting for hot, cold-start, and evaporative
emissions. The collected data were entered into the
COPERT model after incorporating the necessary
climatic data for Addis Ababa and the average distance
traveled by each vehicle category. The model was then
used to quantify three major pollutant emissions from
PVs over the study period, categorized by vehicle type.
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Among these, the three most dominant pollutants,
namely CO,, CO, and NOy, pose significant risks to both
the environment and public health. In this study,
COPERT version 5.6.1 was applied to estimate emission
levels based on vehicle category. The emissions of
different vehicle types were computed in tons per year
using Equations (2) — (5) (Ntziachristos et al., 2009).

Cold start emissions (Ecig) Was determined by
equations (2) and (3).

Ecota = B xbex N« M » enoe * (224~ 1) (2)

foold — AxV +B+T+C

€hot

®)

where 4 is the fraction of distance driven in cold engine
mode, bc is the beta reduction factor, N is the number of
vehicles in stock, M is distance travelled per vehicle, enot
is the hot emission factor, ecoa/enct is over-emission level
compared to hot emissions, V is vehicle velocity in km/h
and T is the temperature in °C.

Hot emissions (Enet) Were calculated using Equation
(4) and expressed as the total km driven by vehicles
during the time considered for a given activity level
(NM).

Epot = NM X epo; (4)

COPERT takes into account evaporation from
diurnal fuel losses (Egiurnar), after-use (Esocax), and running
losses (Erunning), as shown in Equation (5).

®)

Eevap = Ediurnal + Esoak + Rrunning

2.5 PV Emissions estimation

The hybrid modeling approach integrates the
COPERT and ANN models to estimate PV emissions.
Baseline emission factors were derived using the
COPERT model based on PV and fuel type, as described
earlier. These emission factors were subsequently used
as input features for the artificial neural network (ANN)
model, which was trained to predict Addis Ababa-
specific PV emission levels under the conditions
represented by the AADC. The integration of COPERT
and ANN combines empirically derived emission
factors with data-driven prediction capabilities,
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enhancing the robustness of the emission estimates.

2.6 Model performance evaluation

While the hybrid COPERT-ANN approach
enhances prediction accuracy, it also has certain
limitations. The COPERT model may not fully capture
local fleet heterogeneity or variations in road conditions,
and the ANN predictions are influenced by the quality
and completeness of the training data. In addition,
uncertainties in emission factors and drive cycle
representation may affect the model’s performance.
Therefore, to ensure the reliability of the predictions, the
model was validated using a combination of a 70-30%
train—test split and cross-validation techniques.
Moreover, the model performance was enhanced
through calibration with localized parameters to
improve prediction accuracy.

3. Results and Discussion
3.1 Existing passenger vehicles data

The total number of registered gasoline and diesel
PVs in Addis Ababa is presented in Figure 3. The
dataset includes only vehicles officially registered with
the city’s transport authority, excluding unregistered
vehicles and those powered by alternative fuels such as
electric or hybrid vehicles. Between 2005 and 2024, the
number of registered PVs in Addis Ababa increased
sharply, as illustrated in Figure 3, with notable
implications for air quality, traffic management, and
urban planning. Over this two-decade period, the total
number of registered PVs expanded more than
twentyfold, from 15,232 in 2005 to 312,372 in 2024.
Following the Ethiopian government’s ban on the
importation of second-hand vehicles older than five
years, the city’s automobile market began to show signs
of saturation after 2021, suggesting that these regulatory
measures have begun to take effect. Moreover, in 2024,
the Ethiopian government introduced a ban on the
importation of internal combustion engine PVs to
encourage electric vehicle adoption and accelerate the
transition toward sustainable transport systems.
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Figure 3: Registered number of passenger vehicles in Addis Ababa based on fuel type

3.2 Predicted passenger vehicle growth

Figure 4 presents the historical and projected
passenger car registrations in Addis Ababa from 2005 to
2030, as estimated using ANN and PLR models. During
the historical period (2005-2024), the ANN model
demonstrated superior performance compared to the
PLR model when evaluated against actual car
registration data, effectively capturing the nonlinear
growth trends and fluctuations. In contrast, the PLR
model’s rigid linear structure led to noticeable
deviations from the observed data during periods of
irregular growth. These results indicate that the ANN
model provides higher forecasting accuracy and greater
adaptability to the complex dynamics of urban vehicle
growth.

Both models predict continued growth in PV
registrations between 2025 and 2030; however, the PLR
model anticipates a steeper increase, likely due to its
inherent linear assumptions and reliance on historical
data patterns. Overall, the ANN model appears more
suitable for forecasting in dynamic, data-driven urban
environments, whereas the PLR model may serve
complementary purposes in long-term trend analysis
and policy planning.

Table 4 compares the prediction performance metrics
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of the ANN and PLR models. The mean error of the
ANN model is —132.025, while that of the PLR model
is 71.164. The Mean Absolute Error (MAE) is
considerably lower in the ANN model (362.024) than in
the PLR model (882.502). Similarly, the standard
deviation of prediction errors, reflecting consistency
and variability in predictive performance, is
substantially smaller for the ANN model (591.391)
compared to the PLR model (1123.423). Finally, the
ANN model exhibits a higher correlation coefficient (R?
= 0.992) between predicted and actual values than the
PLR model (R? = 0.970). Overall, the ANN model
aligns more closely with the observed data trend,
suggesting a more reliable representation of the
underlying vehicle growth pattern, despite both models
showing strong positive correlations.

Table 4: Summary of prediction model errors

ANN PLR
Parameters
model model
Mean Error -132.025 71.164
Mean Absolute Error 362.024 882.502
Standard Deviation 591.391 1123.423
Linear Correlation 0.992 0.97
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Figure 4: Projected PV registrations in Addis Ababa from 2005 to 2030

3.3 PV emission factors using the COPERT model
The model estimated emission factors for key
pollutants, including CO, NOy, and CO,, which served
as reference values representing the average emissions
per kilometer for each PV class. The baseline factors
provide a critical foundation for assessing the city’s
vehicular emissions profile, enabling comparisons with
model-based forecasts and supporting the calibration of
subsequent machine learning (ANN) predictions
tailored to local traffic and environmental conditions.

3.3.1 CO emission factor

CO emission factors for gasoline passenger vehicles
(GPVs) consistently decreased with advancing Euro
emission standards (Figure 5(a)). This trend shows a
substantial reduction from Euro 1 to Euro 6 across all
the three vehicle types. For example, small GPVs
exhibited a marked decline in CO emission factors from
5.6559 g/km under Euro 1 to 0.3449 g/km under Euro 6.
Similar reductions were observed for medium and
executive GPVs. The convergence of the values to
0.3449 g/km for all wvehicle sizes under Euro 6
underscores the stringent emission limits imposed on
manufacturers. On average, small GPVs recorded the
highest CO emissions, followed by medium and then
large GPVs. The relatively higher emissions of smaller
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2020 2025 2030

vehicles in the earlier Euro stages can be attributed to
less advanced emission control technologies.
Additionally, a slight increase in CO levels from Euro 4
to Euro 5 in some categories may reflect variations in
real-world vehicle performance.

For diesel passenger vehicles (DPVs), CO emission
factors in Addis Ababa also exhibit a clear declining
trend with successive Euro classifications, confirming
the effectiveness of manufacturers” CO-reduction
strategies (Figure 5(b)). For instance, Euro 1 vehicles
have an average CO emission factor of 0.6811 g/km,
which sharply decreases to 0.0569 g/km for Euro 5-
compliant vehicles, largely due to improved fuel
combustion efficiency and the adoption of advanced
catalytic converter technologies. However, slightly
elevated CO emissions in Euro 3 and Euro 4 DPVs may
be attributed to factors such as lean-burn engine
operation under urban driving conditions, discrepancies
between test cycles and real-world performance, and the
degradation of emission control systems over time. The
average CO emission factor for all DPV categories in
Addis Ababa is 0.3408 g/km, which remains relatively
high compared to contemporary European city fleets.
This suggests the continued operation of older Euro 1
and Euro 2 DPVs (with emissions exceeding 0.59 g/km)
contributes significantly to urban air pollution.
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Figure 5: CO emissions factor of 9a) GPVs and (b) DPVs, in Addis Ababa

3.3.2 CO- emission factor

As shown in Figure 6(a), the average CO, emission
factors are significantly high: 230.73, 273.73, and
378.01 g/km for small, medium, and large GPVs,
respectively. While stricter Euro regulations have
successfully reduced pollutants like CO, HC, and NOX,
their impact on CO; emissions for GPVs has been
minimal, with no consistent or noteworthy decrease
across newer Euro standards (Euro 4-6). For instance,
large (SUV) GPVs show a constant CO, emission value
of 404.64 g/km from Euro 4 to 6. This suggests that
gains in combustion efficiency are often offset by
increases in engine size, power demand, or vehicle
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weight, as CO. emissions are directly tied to fuel
consumption. The urban fleet's average CO. emissions
are significantly above current EU regulation standards,
indicating a considerable carbon footprint.

DPVs also show increased CO; emissions in larger
vehicle categories, with little variation across Euro
standards for SUVs, as illustrated in Figure 6(b). While
slight improvements in CO, emissions are observed for
small and medium-sized diesel cars from Euro 3 to 6,
SUVs do not show significant improvement. This is
likely because contemporary diesel engines prioritize
the reduction of PM and NOx over CO, management.
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Figure 6: CO, emissions factor of (2) GPVs and (b) DPVs, in Addis Ababa

A key finding is the trade-off between CO and CO;
emissions: while severe Euro requirements have led to a
significant fall in CO emissions, CO; reductions have
plateaued or even grown, particularly in larger cars. This
highlights a technical compromise where increased
combustion efficiency reduces CO but not equally CO»,
largely due to variations in fuel type and engine size.
The high and constant CO; emission levels from diesel
SUVs pose a unique problem, despite their perception
as more fuel-efficient. This underscores the urgent need
for robust policy interventions, such as regulations
addressing emissions related to engine displacement and
weight, phase-outs of diesel vehicles, and the
establishment of low-emission zones.
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3.3.3 NOx emission factor

The NOy emission factors (g/km) of passenger cars
that run on petrol are shown in Figure 7(a). As pollution
rules were tightened over time, the data shows a
noticeable and steady decline in NOXx levels from Euro
1 to Euro 6. The most significant decrease in NOx
emissions, which is nearly 50% lower between Euro 2
and Euro 3, shows how effective strict legal restrictions
are. Improvements continue, albeit more slowly, after
Euro 3. This indicates the necessity for hybrid or zero-
emission solutions for upcoming reductions and
illustrates the declining returns from conventional
technology.
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Figure 7: NOx emissions factor of (a) GPVs and (b) DPVs, in Addis Ababa

NOx emissions for passenger cars with diesel engines
are shown in Figure 7(b). Diesel vehicles have much
greater NOx emissions across all Euro criteria than their
gasoline-powered counterparts. Despite a noticeable
slowdown in NOx emissions starting with Euro 3, total
levels are still high when compared to gasoline-powered
vehicles. Diesel NO, levels are over four times higher
than those of comparable gasoline-powered vehicles,
even at Euro 6. These findings highlight the
shortcomings of diesel pollution restrictions and support
the case for cities like Addis Ababa to move away from
fleets that run on diesel.

3.4 Predicted PV emission levels using ANN
The integration of COPERT-derived empirical data
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with ANN model enabled a more accurate estimation of
emissions under Addis Ababa’s driving conditions. The
results revealed that small PVs consistently exhibited
lower emission levels across all Euro standards,
reflecting improvements in fuel efficiency and emission
control technologies. Medium PVs demonstrated
moderate emission outputs, while large PVs recorded
the highest emission levels, particularly in pre-Euro and
Euro | categories. As the Euro standard advanced, a
clear reduction in emissions was observed for all vehicle
classes, highlighting the effectiveness of newer vehicle
technologies and regulatory measures in mitigating
vehicular pollution. The detailed annual prediction of
PV emissions for CO, CO; and NOy is presented in the
below to show the trends quantitatively.
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3.4.1. Annual CO emissions

CO emissions from GPVs in Addis Ababa showed a
clear trend, peaking at 26.25 tons/year in 2021, as shown
in Figure 8(a). This surge was primarily attributed to the
predominance of older Euro 1 to Euro 3 vehicles, which
comprised over 43% of the fleet and significantly
contributed to the total emissions. Following 2021,
emissions declined, reaching 19.11 tons/year by 2023,
and then slightly rose to 21.10 tons/year by 2025, even
with consistent vehicle numbers. This decrease was
largely influenced by the Ethiopian government's 2023
ban on ICE PV imports and a progressive transition
towards cleaner Euro 5 and Euro 6 vehicles, though the
rate of fleet modernization remains insufficient to fully
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counteract the impact of older models.

CO emissions from DPVs exhibited significant
annual variation as shown in Figure 8(b), reaching a
peak of 2.61 tons/year in 2021 before stabilizing around
2.54 tons/year by 2025. Euro 2 DPVs were consistently
the largest contributors, accounting for roughly half of
the total annual CO emissions due to their substantial
presence in the aging fleet. While Euro 4 emissions
increased, their overall impact was less significant.
Notably, emissions from Euro 6 vehicles demonstrated
the largest relative growth, indicating a steady adoption
of newer, cleaner diesel technology, despite their
currently small overall contribution.
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Figure 8: Annual CO emissions from 2018 to 2025 of (a) GPV and (b) DPV
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3.4.2. Annual COz emissions

CO, emissions from GPVs displayed a consistent
upward trend (Figure 9(a)), increasing by ~25.2%. This
increase was primarily driven by the rising number of
older, high-emitting vehicles within the fleet.
Specifically, Euro 2 GPVs consistently contributed the
most to CO, emissions (836-849 tons/year), reflecting
their significant presence and cumulative impact. While
newer Euro 4, Euro 5, and particularly Euro 6 vehicles
showed increasing emissions, with Euro 6 experiencing
the largest relative growth (more than tripling from
105.72 to 322.50 tons/year), the overall rise highlights
the cumulative effect of growing vehicle numbers
despite the gradual adoption of cleaner standards.
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Figure 9(b) shows that total CO, emissions from
DPVs also increased, from 1,682.82 tons/year in 2018
to 2,103.28 tons/year in 2025. Euro 2 DPVs remained
the top contributors, indicating that older, high-emitting
vehicles still form the majority of the urban diesel fleet.
Although Euro 3 and Euro 4 vehicles also saw steady
emission increases due to their growing proportion, and
Euro 5 and Euro 6 vehicles exhibited significant relative
growth (Euro 6 from 55.21 to 176.14 tons/year), their
overall contribution remained comparatively low. This
underscores that older and mid-aged DPVs continue to
dominate total CO, emissions, despite the market entry
of cleaner technologies.
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Figure 9: Annual CO; emissions from 2018 to 2025 of (a) GPV and (b) DPV
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3.4.3. Annual NOx emissions

In this study, NOx emissions from GPVs in Addis
Ababa exhibited a gradual increase from 1.89
tonnes/year in 2018 to 2.08 tonnes/year by 2025, as
depicted in Figure 10(a), stabilizing around 2021. Euro
2 vehicles were consistently the largest emitters,
contributing 0.74 to 0.76 tonnes annually. While Euro 3
and Euro 4 emissions showed slight rises and then
plateaued, Euro 5 emissions also increased, despite
these vehicles having better pollution controls, due to
their growing numbers. The most notable relative rise
was observed in Euro 6 vehicles, which, despite having
the lowest emissions overall (0.02 to 0.05 tons/year),
reflect the fleet's increasing adoption of more recent,
low-emission technologies.

Similarly, total NOx emissions from Diesel
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Passenger Vehicles (DPVs) consistently increased from
6.02 tons/year in 2018 to 7.27 tons/year in 2025,
peaking around 7.24 tons/year in 2021 before largely
stabilizing as depicted in Figure 10(b). Euro 2 DPVs
remained the primary source of NOx, contributing 1.81
to 1.86 tonnes annually. Euro 3 and Euro 4 vehicles
were also significant contributors, showing steady
increases. Emissions from Euro 5 cars likewise rose,
indicating that their larger fleet size resulted in a higher
overall burden despite adherence to newer regulations.
Euro 6 vwvehicles, though starting with the lowest
contribution, demonstrated a significant relative
increase in NOx emissions (from 0.16 to 0.50 tons/year),
corresponding with their growing proportion in the
market and reflecting the increasing presence of cleaner
diesel technologies.
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Figure 10: Annual NOx emissions from 2018 to 2025 of (a) GPV and (b) DPV
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3.5 Performance of the ANN Model

The performance of the ANN model in predicting
Addis Ababa’s city-specific PV emissions was
evaluated using standard statistical metrics, including
R2, MAE, and RMSE. The model demonstrated
excellent predictive capability, with R? values ranging
from 0.96 to 0.99 across CO, CO2, and NOx emissions
for both gasoline- and diesel-powered vehicles. This
indicates that the ANN model captured over 95% of the
variance in the observed emissions data. The MAE
values ranged from 0.05 to 0.38 tons/year, indicating a
low average deviation between predicted and observed
emissions, while RMSE values ranged from 0.08 to 0.55
tons/year, confirming the model’s robustness and
accuracy in capturing temporal variations across vehicle
types, sizes, and Euro classification levels. Overall, the
metrics validate the effectiveness of integrating
COPERT-derived baseline emission factors with ANN
modeling to reliably predict annual emissions for small,
medium, and large PVs under Addis Ababa’s driving
conditions.

4. Conclusions

This study combined COPERT-derived baseline
emission factors with an ANN model to forecast Addis
Ababa’s PV emissions, considering fleet growth across
Euro classes. The ANN model outperformed the PLR
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sustainable mobility and air quality goals. Despite some
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representation and emission factor uncertainties, the
proposed COPERT-ANN framework offers a robust
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