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 Understanding the land surface process in numerical models necessitates the consideration of 

Land Surface Temperature (LST) and soil moisture. LST plays a crucial role in regulating 

surface and sub-surface heat; thus, influencing water circulation within the atmosphere. This 

study utilized Landsat 8 Optical Land Imager (OLI) images with a 30 m resolution to analyze 

LST, Soil Moisture Index (SMI) and Vegetation Dryness Index (TVDI) for the Erer Watershed, 

which is in the Wabi Shebelle River basin in Ethiopia. The investigation spanned six years, 

from 2015 to 2021, and it involved determining the Normalized Difference Vegetation Index 

(NDVI) for each specified year to get LST, soil water stress, and TVDI. The thermal infrared 

band's digital values were converted into spectral radiance using the relation specified in the 

Landsat user's manual. The final LST was derived using surface emissivity based on NDVI 

classes. The findings revealed an increasing trend in LST, SMI, and TVDI over time, signifying 

decline in soil moisture. The north-eastern and north-western sections of the Erer Watershed 

exhibited the highest values of LST, SMI, and TVDI, with a negative correlation observed with 

soil moisture. The spatial distribution of LST, SMI, and TVDI can be used as a valuable 

reference for managing soil water stress and to understand ecosystem services. Additionally, 

LST may serve as a significant indicator in monitoring environmental changes, particularly in 

relation to drought, within the study area. 
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1. Introduction 

Understanding the spatiotemporal dynamics of land 

surface temperature (LST) and soil water stress within a 

basin is essential for effective land and water resource 

management. Both LST and soil water stress play 

significant roles in regulating ecosystem health, 

agricultural productivity, and hydrological processes. 

LST regulates both surface and sub-surface heat 

dynamics, thereby influencing water circulation within 

the atmosphere. In numerical models of simulating 

Earth's surface processes, the integration of LST and 

soil moisture data is imperative to accurately represent 
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the system. The continual decline in land use land cover 

on the earth's surface primarily stems from human 

activities, which constitute the majority of such 

alterations. The decrease in vegetation is a significant 

factor contributing to the rise in the LST. Vegetation 

emerges as the principal driver behind LST variations 

(Song et al., 2021). LST serves as a crucial metric for 

assessing ecological functionality, offering insights into 

earth's surface temperature vital for both local and 

global investigations (Phan et al., 2018).  Globally, the 

upward trend in LST is attributed to shifts in land use 

http://www.ejssd.astu.edu/
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and cover, leading to increased soil water stress and 

degradation (Mitiku et al., 2022; Sun and Pinker, 2003).  

Conversely, water held within the pores of soil 

particles against gravity, expressed as soil moisture 

(SM), is a significant factor in hydrological 

management and sympathetic the energy balance of 

terrestrial water (Liu et al., 2012). Even when soil 

moisture is limited, it remains a crucial variable in 

global and regional climate scale models. Soil moisture, 

comprising less than 0.05 % of the planet's freshwater 

resources (Anderson and Croft, 2009; Li et al., 2021), is 

best gauged through direct ground-based methods for 

precise measurement. These approaches offer the most 

reliable assessment of soil water content (Dobriyal et al., 

2012), ensuring consistency in evaluation. 

Surface temperature is a pivotal parameter for 

applications in hydrology, meteorology, and 

climatology. It serves as a vital index in assessing the 

energy budget of the earth's surface. This parameter is 

crucial for determining the net radiation budget at the 

land surface, monitoring crop and plant health, and 

acting as a significant indicator of the impact of 

nurseries and the exchange of vitality between the 

atmosphere and the ground. The features of the land 

surface, such as green cover, land usage, and surface 

impermeability, influence LST, and variations in LST 

can impact soil water. LST offers essential insights into 

the physical characteristics and climate of the surface, 

playing a crucial role in various environmental contexts 

(Lu and Weng, 2004). 

LST is influenced by various factors, including solar 

radiation, land cover, vegetation density, and soil 

moisture content. The presence of more greenhouse 

gases in the atmosphere has significantly worsened the 

magnitude of LST and reducing the soil moisture. 

Increase in LST also has an impact on the monsoon 

countries' weather, causing unpredictable rainfall 

(Rahman and Dedieu, 1994). This has an impact on soil 

moisture which causes soil-water stress. Estimating 

LST areas posed challenges before the advent of Earth 

Observation Satellites (EOS) (Khandelwal et al., 2018). 

A variety of methods have been used to analyze the 

spatiotemporal dynamics of LST and soil water stress in 

basins (Sobrino and Raissouni, 2000; Mitiku et al., 

2022). Remote sensing techniques, including thermal 

infrared imagery and microwave radiometry, are 

commonly used to estimate LST and soil moisture 

content over large spatial extents. .  

To transform point data into spatial data, LST was 

traditionally computed for precise sample points and 

then interposed into isotherms (Mallick et al., 2008). 

Isometric LST maps were commonly derived through 

spatial interposition techniques applied to observations 

at sample locations (Ali and Shalaby, 2012). Das et al. 

(2022) emphasized the substantial influence of land-use 

land-cover changes on LST, while Zullo et al. (2019) 

highlighted the impact of the spatial pattern of urban 

expansion on LST. These issues led to numerous 

research projects focusing on soil water (SM) and LST. 

Temperature Vegetation Dryness Index (TVDI) and 

Soil Moisture Index (SMI methods stand out as widely 

employed synergistic techniques for soil moisture 

analysis (Sobrino and Raissouni, 2000). Utilizing the 

Normalized Difference Vegetation Index (NDVI) and 

LST, TVDI and SMI provide approximations of soil 

moisture or dryness (Sandholt et al., 2002). Given its 

role in the energy exchange between the land surface 

and the atmosphere, LST is a crucial metric for 

assessing surface soil moisture (Wan et al., 2004). 

Examining terrain effects on land surfaces often 

relies on satellite imagery, which provides valuable 

insights into land cover and patterns, including 

vegetation, water bodies, bare soil, and more (He and 

Wu, 2019). Currently, the geographical detection of 

LST is facilitated by satellites equipped with high-

resolution sensors. By utilizing thermal ultraviolet 

bands available on satellites, like Landsat, it becomes 

feasible to compute LST for entire areas in a single 

analysis. Several scholars have utilized Landsat imagery 

to create land use or cover images. However, remotely 

sensing land surfaces poses significant challenges due to 

the vast variability of land surfaces and complexities in 

eliminating atmospheric influences. Additionally, there 

exists a disparity between the criteria for land surface 

models and remote sensing, where remote sensing 

assesses emissivity through channels at specific 

wavelengths (Sobrino et al., 2004).  

Studies conducted in various regions of Ethiopia 

(Mitiku et al., 2022; Bayisa et al., 2022; Dissanayake et 

al., 2019) indicated a substantial increase in LST. 

Specifically, Mitiku et al. (2022) showed increase in 

LST by 9.5 °C over 30 years period (1990 to 2020). 
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Similar to LST, soil water stress, temperature dryness, 

changes in land-use and land-cover are causing a large 

increase in air temperature (Dessalegn et al., 2021; 

Mitiku et al., 2022). One of the most used water stress 

indices for determining soil water stress using LST and 

NDVI distributions are TVDI and SMI. To assess the 

ambient environmental conditions suitable for living 

organisms, NDVI offers a more comprehensive 

evaluation compared to LST. Additionally, the necessity 

of representing the distribution of green space has been 

supported by the use of NDVI (Yuan and Bauer, 2007). 

A gradual decline in remote detection indicators, 

including NDVI and Modified Normalized Difference 

Water Index (MNDWI) are documented (Liang et al., 

2011; Vlassova et al., 2014). This decrease is attributed 

to various factors such as disforestation, heightened 

urbanization, forest fires, the expansion of cultivable 

land, and the enlargement of pasture lands. The decline 

in the indices is associated with an increase in LST.  

Although the indices have been utilized in prior 

research to model LST (Chen and Zhang, 2017), a 

limited number of studies have undertaken a comparison 

of index data from different time series data for 

assessing surface temperature. In Eastern Ethiopia, 

where LST is a significant contributor to climate 

change, the impact of this phenomenon has 

repercussions on the agricultural development in the 

region. It is clear that the decrease in the amount of 

natural cover for agricultural development is what has 

caused the LST to increase over time. The decline of 

wetlands and the spread of parched land were other 

reasons causing an increase in LST. Thus, 

understanding LST and soil water stress spatial patterns 

and their drivers is crucial for informed land 

management decisions, agricultural planning, water 

resource allocation, and climate change adaptation 

strategies within the basin.  

Moreover, despite advances in remote sensing 

technologies and spatial analysis techniques, several 

knowledge gaps persist in the spatiotemporal analysis of 

LST and soil water stress in basins. There is a need for 

improved spatial resolution and accuracy of remote 

sensing data, especially in heterogeneous landscapes 

and complex terrain. Besides, detailed research is 

required to understand the interactions between LST, 

soil moisture, vegetation dynamics, and hydrological 

processes at finer temporal scales, including diurnal and 

seasonal variations. Integrated interdisciplinary 

approaches, combining remote sensing, and climate 

factors, are essential for advancing the understanding of 

the complex spatiotemporal dynamics of LST and soil 

water stress in basins and their implications for 

sustainable land and water management. Therefore, this 

study used remote detection indicators like NDVI, SMI, 

and TVDI to examine LST and soil water stress in Erer 

Watershed. 

2. Materials and Methods 

2.1. Description of the study area 

This study focused on Erer Watershed, which is in 

the Upper Wabi Shebelle Basin, a vital transboundary 

river basin in East Africa, particularly Ethiopia. The 

Sub-basin is situated between 08°12'35" and 09°31'07" 

N latitude and 42°04'27" and 42°31'07" E longitude 

(Figure 1), with elevation ranging from 800 to 2,920 

m.a.s.l. and drainage area of 3,860 km2. It is 

predominantly characterized by Kolla (warm semiarid) 

climate; approximately 73.5% of the Erer Watershed 

falls within an elevation range of 500 to 1500 m above 

sea level. The Woina Dega (cool sub-humid; 1500–2300 

m.a.s.l.) and Dega (cool humid; 2300–3200 m.a.s.l.) 

climates constitute around 25.12 and 1.36% of the total 

drainage area, respectively. The catchment experiences 

annual variations in average rainfall, ranging between 

744 and 1017 mm; the majority of the rainfall occurs 

during summer (Shumete, 2015). The climatic 

variations within the Erer Watershed provide a diverse 

and dynamic backdrop for the study's exploration of 

environmental factors and patterns. 

The average maximum temperature for a given 

month is 29.95°C, and the mean minimum temperature 

is 16.72°C. The principal soil types, which make up 4, 

8, 20, 19, 49 and 16%, respectively, of the entire 

research area, are humic cambisols, dystric cambisols, 

eutric nitosols, eutric regosols, haplic xerosols and 

calcaric regosols (MoA, 2000).  
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Figure 1: Ethiopian River basin and study area location 

2.2. Data Collection and processing  

The Landsat 8 images used to cover Erer Watershed 

were obtained through the USGS Earth Explorer's 

online data services (USGS, 2021).  The image was 

captured during periods of ten percent or low cloud 

cover throughout the dry and wet seasons. Accordingly, 

landsat8 sensors of accuracy 30 m and bands 4-11, 

acquired on Dec. 15, 2015 and Dec. 15, 2021, were 

employed to map the LST in Erer Watershed. The wet 

months in Erer Watershed last from May - October, and 

the dry season lasts from November - April.  Image 

correction and preprocessing were performed using the 

standard procedure as explained below.  

The pre-processing of the images encompassed both 

visual and digital image processing. Specifically, for 

further analysis, bands of B10 and B11 from the thermal 

infrared spectrum were selected. Area of interest was 

selected using Erer Watershed shape file that was 

extracted from the complete scenes. ERDAS imagine 

2015 software were used for image processing. 

Corrections were applied to the images to rectify 

potential distortions introduced during image collection 

process, utilizing toolbox developed by the European 

Union's Joint Research Centre. Geocoding was 

implemented using the coordinate and mapping system 

derived from national topographic maps to guarantee 

precise identification of changes over time and to 

maintain geometric compatibility with other data 

sources. UTM zone 37 North coordinate system were 

used to project all images referencing WSG1984 for 

consistency.    

2.3. Retrieval of land surface temperature (LST) 

The image analysis process was performed using 

ArcGIS 10.4. In this investigation, Landsat 8's thermal 

infrared, two bands Band10 and Band11 were employed 

to determine brightness illumination temperatures, 

while Band 4 and Band 5 were utilized for estimating 

the NDVI. USGS web page sourced as LST query 

methods to save the peak of top of atmospheric (TOA) 
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spectral radiance (USGS, 2021). The retrieval of LST 

followed the steps outlined in Figure (2).  

2.3.1 Top of Atmospheric Spectral Radiance 

Using the radiance rescaling coefficients outlined in 

the metadata file, the digital numbers (DN) 

corresponding to the thermal band data underwent a 

transformation to top-of-atmosphere (TOA) spectral 

radiance, as described by Eq. (1) (Avdan and 

Jovanovska, 2016).   

Lλ = ML*Qcal + AL                                                  (1) 

where Lλ = TOA (Watts/(m2×srad×μm)), ML = Band-

specific multiplicative rescaling factor, Qcal is quantized 

and calibrated standard product pixel values (DN), AL = 

band-specific additive rescaling factor.   
 

 

Figure 2: Flow chart used in the research 
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The thermal coefficients available in the Metadata 

file applied to convert thermal band data from spectral 

radiance to top of atmospheric illumination temperature 

(Avdan and Jovanovska, 2016). This is given as Eq. (2).  

𝐵𝑇 =
𝐾2

ln[(
𝐾1
𝐿𝜆

)+1]
− 273.1                                             (2) 

where: BT = TOA brightness temperature; K1 and K2 

are band-specific thermal conversion constant from the 

metadata. 

2.3.2 Estimation of NDVI values 

Drought conditions are intricately linked with the 

NDVI derived remote sensing data. Diverse 

wavelengths of Red and near-infrared band (NIR) 

sunlight send back by green vegetation are analyzed to 

assess the green density on the watershed area. The 

estimation of the NDVI values involved the use of the 

red (B4) and NIR (B5) bands.  As the quantity of green 

cover plays a pivotal role, and the NDVI serves as an 

indicator of overall vegetation status, the estimation of 

NDVI becomes imperative.  Eq. (3) used for estimation 

of NDVI from Landsat 8 (OLITIRS).  

NDVI =
B 5−B 4

B 5+B4 
                                                     (3) 

2.3.3 Proportion of vegetation (PV) estimation 

The extent of land covered with green, as seen from 

a perpendicular perspective, is commonly referred to as 

the PV value or the vegetation fraction. Changes in green 

cover significantly impact energy balances through 

processes such as plant transpiration, surface water 

retention, surface albedo, emissivity, and surface 

roughness. NDVI values, indicative of both vegetation 

and soil, are intricately linked to the PV percentage of 

green cover. To estimate the proportion of green cover, 

the traditional NDVI approach (Rouse et al., 1974), 

given as Eq. (4), was employed. 

Pv = (
NDVI−NDVIs

NDVIv−NDVIs
)2                                          (4) 

where NDVIv is maximum NDVI for green-cover 

and NDVIs is minimum one for soil. 

 

2.3.4 Estimation of land-surface Emissivity  

Land-surface Emissivity (LSE or ε) is derived from 

earth surface temperature and radiance, representing 

mean emissivity of a surface element on land. As a 

crucial proportionality factor in scaling blackbody 

radiance to forecast released radiance, LSE plays a 

significant role in efficiently conveying thermal energy 

across the surface into the atmosphere. Knowledge of 

LSE is essential for estimating LST (Jimenez-Munoz et 

al., 2006). Based on Sobrino et al. (2004), ground 

emissivity is determined by Eq. (5). 

𝜀𝜆 = 𝜀𝑣𝜆𝑃𝑉 + 𝜀𝑆𝜆(1 − 𝑃𝑉) + 𝐶𝜆                                (5) 

where εv = vegetation emissivity;, εs = soil 

emissivity, C = surface roughness = 0.005 (Sobrino and 

Raissouni, 2000). 

When NDVI is less than 0, it is classified as water 

and the corresponding emissivity rate is 0.991. For 

NDVI values within 0 and 0.2, the land is considered to 

be covered by soil, and 0.996 is applied as an emissivity 

value (Baris et al., 2014). For NDVI between 0.2 and 

0.5, it is considered a combination of soil and green 

cover. When the NDVI value exceeds 0.5, vegetation is 

deemed present, and a value of 0.973 is given. An 

emissivity rate 0.996 is provided in this study, 

considering the typical NDVI range between 0 and 0.2. 

Then, Eq. (6) (Baris et al., 2014), was used to 

estimate LST, or the emissivity modified earth surface 

temperature Ts. 

𝑇𝑠 =
𝐵𝑇

1+[(
𝜆𝐵𝑇

𝐶2
)𝑙𝑛ελ]

                                                 (6) 

where 𝑇𝑠 is LST in oC, BT = at-sensor brightness 

temperature (˚C), λ = the wavelength of emitted 

radiance (λ = 10.895) (Baris et al., 2014), C2 = 1.4388 * 

10−2 m K (Eq.13), ελ = the emissivity estimated above. 

2.4. Soil moisture index (SMI) 

In a number of earlier investigations, remote sensing 

was utilized to map soil moisture using techniques such 

as earth surface temperature (Amani et al., 2017; 

Mohamed et al., 2020) and the alteration of vegetation 

indicators (Joiner et al., 2019; Schnur et al., 2010). In 

this work, SMI is determined using the LST technique, 

and data on vegetation density is developed using 
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NDVI. The strongest relationship between NDVI and 

soil surface moisture is positive (Amani et al., 2017), 

and vegetation is the most important factor in 

determining soil moisture. 

The soil moisture content (SWC) decreases as the 

green-cover increases (Yang et al., 2018). The state of 

LST is influenced by the energy balance of the surface, 

atmospheric conditions, thermal properties of the 

surface, and characteristics of the subsurface media 

(Weng, 2009). Low infiltration indicates significant soil 

moisture when the surface temperature is low (Saha et 

al., 2019). The SMI was estimated using the Eq. (7) 

(Saha et al., 2019). 

SMI =  
LSTmax−LST

LSTmax−LSTmin
                                          (7) 

Where: LSTmax and LSTmin are maximum and 

minimum surface temperature in oC, respectively. 

LSTmax = a1 x NDVI + b1                                                                       (8) 

LSTmin = a2 × NDVI + b2                                                                                (9) 

The empirical parameters 𝑎1, 𝑎2, 𝑏1, and 𝑏2 are found 

through linear-regression, representing the slope ‘a’ and 

intercept ‘b’ for both warm and cold edges of the data. 

The initial step in calculating SMI involves converting 

digital numbers to spectral radiance (L in W/𝑚²/sr/μm) 

using Eq. (10) (Lwin, 2010; Potic et al., 2017; Saha et 

al., 2019).  

L = 𝐿𝑆𝑇𝑚𝑖𝑛 + (((𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛)/ (𝑄𝐶𝐴𝐿𝑚𝑎𝑥 − 

𝑄𝐶𝐴𝐿𝑚𝑖𝑛)) × (DN − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛))                     (10) 

where: 𝐿𝑆𝑇𝑚𝑖𝑛 and 𝐿𝑆𝑇𝑚𝑎𝑥 are spectral radiance 

calibration constants (Table 1) and 𝑄𝐶𝐴𝐿𝑚𝑎𝑥 and 

𝑄𝐶𝐴𝐿𝑚𝑖𝑛 denote the maximum and lowermost 

quantized calibration pixel values (Table 1). 

Table 1: Spectral radiance and Quantized calibration 

pixel values for Landsat8 thermal bands 

(Potic et al., 2017; Saha et al., 2019)   

 
Band  

Maximum 

radiance 

Minimum 

radiance 

Spectral 

radiance 

4 and 5 1.3490 18.404 

10and 11 0.2004 19.002 

Quantized 

calibration 

pixel 

4 and 5 0.9900 286 

10 and 11 0.9900 59448 

To compute 𝐿𝑆𝑇𝑚𝑎𝑥 and 𝐿𝑆𝑇𝑚𝑖𝑛, two inputs, 

namely LST and NDVI, were first estimated. The LST 

in Kelvin (K) is determined using Landsat 8 Thermal 

bands, employing Eq. (11) (Weng et al., 2004; Saha et 

al., 2019): 

LST = 𝑇𝑏/ [1 + (λ × 𝑇𝑏/𝐶2) × ln (ε)]                (11) 

where: 𝑇𝑏 = Satellite Brightness Temp ( Eq. (12),        

λ = wavelength of emitted radiance, 𝐶2 = 1.4388 × 10−2 

m K, and ε = emissivity (typically 0.95) 

  𝑇𝑏 = (𝐾2/ (ln (𝐾1 × ε/L + 1)))                             (12) 

where: K1 = calibration constant 1 depending on the 

sensor, K2 = calibration constant 2 depending on the 

sensor (Table 2) and L = spectral radiance (Saha et al., 

2019). 

𝐶2 = h × c/s                                                         (13) 

where: h = 6.626 × 10−34 Js, c = light velocity =   

2.998 × 108 m/s, and s = constant from Boltzmann =  

1.38 × 10−23 J/K. 

Table 2: Thermal infrared constant for Landsat 8 (Potic 

et al., 2017; Lwin, 2010). 

Thermal constant Band 10 Band 11 

K1 774.8853 480.8883 

K2 1321.0789 1201.1442 

2.5. Temperature vegetation dryness index 

(TVDI) 

For evaluating drought situation locally, one of the 

appropriate index is to use TVDI; this was generated 

from NDVI and LST. TVDI reflects the surface soil 

moisture well, especially in broad areas with vegetation 

coverage and soil moisture. Eq. (14) was used to 

calculate TVDI from NDVI’s land surface temperature 

(LST) (Carlson et al., 1994). 

TVDI =
LST−LSTmin

LSTmax−LSTmin
                                            (14) 

where LSTmax is max land surface temperature and 

LSTmin is min land surface temperature. 
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3. Results and Discussion  

This study considered the years 2015 and 2021 in 

analyzing LST, SMI, and TVDI (Figures 3 and 4). In 

2015, LST ranged from low to medium in the southern 

and southeastern parts of the study area. However, by 

2021, these areas exhibited a spatial shift towards very 

high LST. Conversely, there was little change observed 

in the northern part of the study area. LST serves as a 

vital parameter for assessing evapotranspiration, 

vegetation water stress, soil moisture stress, and thermal 

inertia in the study region. 

Figure 3 illustrates the spatial distribution of SMI in 

2015, indicating predominantly low to medium values 

in the eastern and western parts of the study area, while 

the northern section showed predominantly high to very 

high values. Conversely, the spatial distribution of 

TVDI in 2015, exhibited a contrasting pattern to SMI, 

with predominantly very high to medium values in the 

eastern and western parts of the study area. 

For both 2015 and 2021, the southern and eastern 

regions consistently displayed extreme LST, SMI, and 

TVDI patterns. According to Mitiku et al. (2022), the 

decrease in vegetation cover and increase in bare ground 

are correlated with rising LST. In our study area, there 

was a significant increase in both SMI and TVDI, 

indicating a direct correlation with LST. 

In the study area, LST recorded in 2015 was relatively 

mild compared to that of 2021. Similarly, the resulting 

SMI and TVDI for 2015 were less severe compared to 

that of 2021. The significant increase in LST observed in 

2021, accompanied by accelerated SMI and TVDI rates, 

can be attributed to the rising atmospheric temperatures 

during that period (Dessalegn et al., 2021; Mitiku et al., 

2022).
 

 

 
Figure 3: Spatial distribution of LST, SMI, and TVDI in 2015 
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Figure 4: Spatial distribution of SMI, LST, and TVDI in 2021 

The most notable finding was the substantial rise in 

LST in 2021, primarily driven by global warming, 

which impacts both atmospheric and LST trends 

positively. However, further analysis in this study 

revealed that the relationship between NDVI and LST 

played a crucial role in understanding the increase. It is 

important to note that spatially, LST increased in both 

2015 and 2021, indicating a positive association with 

time as revealed by the study's results. 

In a dry situation, neither transpiration nor 

evaporation occurs, resulting in very high spatial 

distributions of TVDI and SMI. Conversely, in wet 

conditions, both transpiration and evaporation reach 

their maximum levels, leading to very low TVDI and 

SMI values. Integrating LST and NDVI provides 

valuable insights into evapotranspiration, air 

temperature, and soil moisture content (Sandholt et al., 

2002). TVDI and SMI parameters are closely linked to 

land cover characteristics, including LST and NDVI 

(Petropoulos et al., 2015). Theoretically, an inverse 

linear relationship between TVDI and soil moisture is 

proposed (Li et al., 2010). 

This study focused on the understanding of the 

geographical and temporal relationships among Land 

LST, TVDI, and SMI in monitoring and assessing 

drought. Contrary to common belief, which suggests a 
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positive connection between LST, TVDI, and SMI, 

these variables are actually inversely related to soil 

moisture. This relationship is influenced by factors such 

as vegetation type, season, and geographic location, 

with various attempts made to explain it based on 

biophysical and geographic elements such as terrain, 

fractional vegetation cover, land-use land cover, and 

moisture conditions. 

Generally, it was observed that an increase in LST 

often leads to a significant rise in TVDI and SMI. The 

study revealed a trend of increasing LST, SMI, and 

TVDI over time, contributing to soil moisture 

degradation. Specifically, the northeast and northwest 

regions of the Erer Watersheds exhibited the highest 

LST, SMI, and TVDI values, which are negatively 

correlated with soil moisture. Similarly, the Rift Valley 

of Ethiopia also displays a strong negative relationship 

between soil moisture and LST (Bayisa et al., 2022). 

4. Conclusions and Recommendations 

This study focused on the analysis of Land Surface 

Temperature, Soil Moisture Index, and Temperature 

Vegetation Dryness Index for the years 2015 and 2021. 

The results indicated a significant increase in LST from 

2015 to 2021, particularly in the southern and 

southeastern parts of the study area. This rise in LST 

was accompanied by elevated SMI and TVDI values, 

suggesting a correlation between increasing 

atmospheric temperatures and soil moisture stress. 

Furthermore, the study highlighted the intricate 

relationship between LST, TVDI, and SMI, revealing a 

pattern of increasing soil moisture deficit over time. The 

spatial distribution of these indices demonstrated 

geographical variations, with certain regions 

consistently exhibiting higher LST, SMI, and TVDI 

values, indicative of severe soil moisture stress. The 

study identified an inverse relationship between LST, 

TVDI, and SMI, emphasizing the complex interplay of 

factors such as vegetation type, seasonality, and 

geographic location. This finding underscores the 

importance of considering multiple variables and 

environmental factors when assessing drought 

conditions and soil moisture dynamics.  

Continuation of long-term monitoring efforts is 

essential to track trends in LST, SMI, and TVDI over 

extended periods. The longitudinal approach will 

provide valuable insights into the dynamics of soil 

moisture stress and climate change impacts on the study 

area. Incorporating additional remote sensing datasets, 

such as precipitation records and land cover 

classifications, can enhance the accuracy of drought 

monitoring and prediction models. Integrating multi-

source data will also improve the understanding of the 

complex interactions between climate variables and soil 

moisture dynamics. Conducting localized assessments 

at finer spatial scales can capture microclimate 

variations and better inform targeted adaptation and 

mitigation strategies. This approach will enable 

stakeholders to address specific soil moisture stress 

hotspots and prioritize resource allocation for drought 

resilience measures. Policymakers are suggested to 

consider integrating scientific findings into land use 

planning and water resource management strategies. 

Implementing evidence-based policies that promote 

sustainable land management practices and water 

conservation measures can help mitigate the impacts of 

soil moisture stress and climate change on agricultural 

productivity and ecosystem health.  
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