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 Over the past two decades, Ethiopia experienced recurrent and severe droughts, significantly 

impacting its environment, the livelihoods of its citizens, and the structure of its societal norms. 

To address these challenges, communities have increasingly turns to ecosystems as a natural 

buffer against the effects of climate change, particularly drought. The aim of this study was to 

analyze and to characterize drought-prone areas. The study highlighted the critical role of 

nature-based solutions (NbS) in climate change mitigation. Moreover, it proposed a long-term 

strategy to integrating NbS into disaster risk reduction plans by leveraging multi-sensor 

satellite data and other sources. The Analytical Hierarchy Process (AHP), Geographic 

Information System (GIS) and Remote Sensing (RS) were employed to evaluate drought 

vulnerability in the study area. The key variables considered for the study were elevation, slope, 

aspect, land uses and land cover, population density, normalized difference vegetation index, 

land surface temperature, normalized difference moisture index, vegetation condition index, 

vegetation health index, and soil moisture index. These metrics collectively provided a 

comprehensive assessment of drought conditions in the region. The findings revealed varying 

levels of drought severity: approximately 30.5 % of the study area is classified as experiencing 

medium drought, 19.1 % faces high drought, and 20 % shows no drought conditions. The 

results underscore the urgent need for a cohesive strategy to mitigate drought risks, focusing 

on climate adaptation and sustainable land management through NbS. This approach is vital 

for enhancing resilience and ensuring long-term sustainability in vulnerable regions.  
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1. Introduction 

Climate change has exacerbated extreme weather 

conditions, such as excessive precipitation, extreme 

flooding, and hydro-meteorological droughts, in many 

parts of the world (Miralles, et al., 2019). The incidence 

and severity of hydrological and meteorological risks 

like wildfires, floods, cyclones, and sea level rise have 

risen due to climate change (Rather et al., 2022; Rehman 
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et al., 2022; Mitchard, 2018). Particularly, the world is 

experiencing a critical time for continued rise in surface 

temperature; by the end of the century, temperatures are 

predicted to rise by up to 5°C (IPCC, 2021). However, 

with the imbalance in the natural elements brought on 

by climate change, weather occurrences become 

increasingly unpredictable. Over the past ten years, 

http://www.ejssd.astu.edu/
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normal climatic phenomena have evolved into lethal 

threats that endanger humanity. There is an urgent need 

for water in many regions worldwide as the effects of 

climate change intensify. Although climate change 

impacts are felt globally, tropical countries are 

particularly vulnerable. Seasonal unpredictability, 

including prolonged summers and erratic monsoon 

arrivals and departures, have led to more floods and 

droughts. 

The hydrological balance is affected by prolonged 

and abnormal dry weather conditions, which is referred 

to as a drought. Droughts are climatic disasters that 

occur on a global scale, with varying frequency and 

intensity (Baik et al., 2019; Rahmati et al., 2020). They 

have a significant impact on water availability as well as 

socioeconomic, and environmental activities (Deo et al., 

2017). Hydrological droughts are characterized by a 

shortage of water in ponds, reservoirs, rivers, and 

aquifer, whereas meteorological droughts are caused by 

insufficient precipitation (Khoi et al., 2021). According 

to the drought special report of UNDRR (2021), at a 

temperature increase of 3 to 5°C, a severe to very severe 

drought will spread throughout central and eastern 

Ethiopia. In addition, droughts that afflicted roughly 1.5 

billion people between 1998 and 2017 resulted in up to 

USD 124 billion in economic losses world-wide.  

Additionally, human activities place immense stress 

on natural resources, leading to their overexploitation 

and degradation (Hasan & Rai, 2020). The increasing 

aridity in tropical river basins has been a focal point of 

research (Vu et al., 2017; Khatiwada & Pandey, 2019; 

Rehana & Naidu, 2021). For instance, Tadesse et al. 

(2017) reported that human interference has triggered a 

groundwater crisis and drought conditions in Ethiopia’s 

Eerer Sub-basin. To better understand these challenges, 

researchers have emphasized the importance of 

assessing intensity, frequency, and occurrence of 

droughts using diverse variables (UNDRR, 2021). 

Innovative methodologies have been developed to 

address these issues. Ma et al. (2014) introduced an 

improved Standardized Palmer Drought Severity Index 

(SPDI) for precise spatiotemporal drought analysis 

worldwide. The Standardized Runoff Index (SRI) and 

Standardized Precipitation Index (SPI) were used by Vu 

et al. (2017) to evaluate hydrological and 

meteorological drought in Vietnam. Similarly, Sur et al. 

(2019) conducted a remote sensing-based assessment of 

agricultural drought using hydro-meteorological 

variables. In Kuwait, Alsumaiei & Alrashidi (2020) 

analyzed groundwater drought in desert areas using a 

condensed precipitation index. Various analytical 

approaches have also been employed to study drought, 

including examining its drivers, impacts, and responses 

(Lange et al., 2017). Khan et al. (2018) utilized neural 

network models, Lange et al. (2017) employed 

nonlinear autoregressive neural networks, and Azhdari 

et al. (2021) applied multivariate analysis and statistical 

methods for in-depth understanding of drought 

dynamics and the potential mitigation strategies. 

The integration of Analytical Hierarchy Process 

(AHP) and Geographic Information System (GIS) has 

been extensively explored across various fields 

(Malczewski, 2006). For instance, Ying et al. (2007) 

developed an effective method combining AHP and GIS 

for regional eco-environmental evaluations. Similarly, 

multi-criteria assessment techniques integrated with 

GIS have yielded promising results in ecological 

modelling and managing flood and landslip hazards 

(Chen et al., 2011; Hasekiogullari & Ercanoglu, 2012; 

Stefanidis & Stathis, 2013; Demir et al., 2013). The 

integration of AHP and GIS was also applied in 

assessing drought risk. A notable example is the study 

conducted in Gubbi Taluk, Karna-taka, by Prakash et al. 

(2006). Their research was aimed to map drought 

severity using 17 GIS-based parameters influencing 

drought. The methodology involved developing a 

spatial database, assigning appropriate grading and 

ranking parameters, and integrating them into a GIS 

framework to create a drought intensity map. This 

approach demonstrated the potential of GIS and AHP in 

creating spatially robust drought assessments. Some 

other studies have also underscored the versatility and 

efficacy of integrating AHP with GIS for environmental 

and hazard assessments, including drought risk analysis 

(Palchaudhuri and Biswas, 2016; Ekrami et al., 2016; 

Sivakumar et al. 2021). 

To ensure effective drought management, it is crucial 

to incorporate as many relevant parameters as possible 

across different categories of drought as feasible to 

derive comprehensive information on overall drought 

vulnerability. However, relatively few studies 

worldwide have successfully integrated multiple 
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drought categories with sufficient criteria for assessing 

drought vulnerability. A recent study by Alharbi et al. 

(2022) examined drought vulnerability in the 

Kangsabati River Basin, Indian state of West Bengal, 

using an integrated approach that combined AHP and 

Geo-informatics. The research focused primarily on 

agricultural drought, employing various vulnerability 

factors to estimate drought risk. Despite its valuable 

insights, the study highlighted a broader gap in 

integrating multiple drought categories into 

vulnerability assessments. However, no study was 

conducted in Eerer sub-basin, which is vulnerable to 

drought, with comprehensive approach combining 

various drought categories with appropriate criteria. 

Like other semiarid basins, Eerer Sub-basin has recently 

experienced significant hydro-meteorological hazards. 

To address these challenges, this research employed 

AHP to investigate the spatiotemporal distribution of 

drought-influencing factors across the region. Thus, the 

study aimed to analyze and characterize drought-

vulnerable areas within the sub-basin, and it proposed a 

long-term solution by incorporating nature-based 

solutions (NbS) into disaster risk reduction plans. The 

findings provide scientific evidence for designing 

resilient and effective NbS that promote sustainability 

and benefit the society as well as the environment. 

Moreover, they have profound implications for the 

development and implementation of climate adaptation 

and biodiversity management policies. 

2. Materials and Methods 

2.1 Study area description  

The study was conducted in Erer Sub-basin, which is 

part of the upper Wabi Shebelle Basin of Ethiopia, with 

elevation ranging from 800 to 2,920 m.a.s.l. (Dejene, et 

al., 2023). Geographically, the sub-basin is located 

between 08°12'35" and 09°31'07" N latitude and 

42°04'27" and 42°31'07" E longitude (Figure 1).  

 
Figure 1: Location and elevation map of the study area 
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Covering a drainage area of 3,860 km2, the sub-basin 

primarily falls within the ‘kolla’ climate classification 

(warm semiarid), which encompasses elevations 

between 500 and 1,500 m.a.s.l. and accounts for 73.5% 

of the area. According to Abrha (2016), the ‘woina 

dega’ climate (cool sub-humid; 1,500–2,300 m.a.s.l.) 

constitutes 25.12% of the area, while the ‘dega’ climate 

(cool humid; 2,300–3,200 m.a.s.l.) covers around 

1.36%. Administratively, the sub-basin includes part of 

Harari Region and Kombolcha, Jarso, Babile, 

Midhagatola, and Fedis districts. The region 

experiences annual rainfall of 744 to 1017 mm, with 

most precipitation occurring during the summer months 

(MOA, 2000).  

The average monthly maximum and minimum 

temperatures of the study area are 29.95 and 16.72 °C, 

respectively. The principal soil types are calcaric 

regosols (4%), eutric nitosols (8%), eutric regosols 

(20%), dystric cambisols (19%), haplic xerosols (33%), 

and humic cambisols (16%). These soil types 

collectively show diverse composition, influencing the 

area’s agricultural and ecological characteristics.  

2.2 Research design 

To assess drought vulnerability, various factors were 

considered based on insights from previous studies. 

Thus, eleven drought indicators were selected to analyze 

drought occurrence in the study area by integrating GIS, 

Remote Sensing, and AHP. The indicators include 

elevation, slope, aspect, land use and land cover 

(LULC), population density, normalized difference 

vegetation index (NDVI), land surface temperature 

(LST), normalized difference moisture index (NDMI), 

vegetation condition index (VCI), vegetation health 

index (VHI), and soil moisture index (SMI). AHP was 

employed to assign relative weights of influence to each 

criterion, drawing on expert opinions rather than 

assuming equal weights for all parameters 

(Hasekiogullari & Ercanoglu, 2012). A weighted 

overlay analysis was then applied to standardize the data 

and to integrate the weights into thematic maps 

(Feizizadeh & Blaschke, 2013). After generating a 

drought vulnerability map, a prospective drought risk 

management strategy was developed using input 

collected from stakeholders during focus group 

discussion (FGD). The study also utilized Living Labs 

approach (Atteslander, 2003), to enable participatory 

planning and interactive processes for drought risk 

reduction. This approach, rooted in NbS, is crucial for 

incorporating stakeholders' perspectives and fostering 

effective drought mitigation strategies. The 

comprehensive methodology used is illustrated in 

Figure 2. 

2.3 Datasets and standardization 

To meet the research objectives, data was collected 

and organized from both primary and secondary 

sources. FGDs were conducted in the sub-basin, which 

was divided into two groups. Each of the five districts 

included in the Sub-basin had its own separate FGD. 

Each discussion involved between seven and twelve 

participants. The focus of the discussion was on the 

fluctuations of drought, over the past 30 years. 

Participants who were over the age of 30 were 

intentionally selected, as it was believed that their 

experiences would provide valuable insights into the 

drought conditions of the past three decades.  

Furthermore, GPS data was utilized to identify areas 

vulnerable to drought. Population density data for all 

regions at district level, from 2014 – 2017, was obtained 

from the Central Statistical Agency (CSA) of Ethiopia 

(CSA, 2013), and summarized (Table 1). Additionally, 

Senti-nel-2A imagery from 2014 to 2020 was used to 

create LULC maps, as along with maps for NDVI, LST, 

NDMI, VCI, VHI, and SMI. These maps ensured cloud-

free coverage at a resolution of 10×10 m. Satellite data 

from LANDSAT8 (OLiTRS) was also incorporated for 

analysis. Furthermore, the Alaska Digital Elevation 

Model (DEM) data, with a resolution of 12.5 ×12.5 m, 

was utilized for watershed delineation and to analyze 

elevation, slope, and aspect. 

During the data analysis phases, various methods 

were employed to ensure the accurate selection, 

organization, processing, editing, clearing, and 

verification of input criteria. Field validation, validating 

digitization, data integration, and transformation were 

also conducted to locate pertinent information, to 

provide recommendations, and to support decision-

making. Thematic layers were converted into a raster 

data format following standardization guidelines, and 

these layers were subsequently classified using insights 

from extensive literature review and expert knowledge. 
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Key vegetation and environmental indices were 

calculated by using equations 1 to 3, given by Myneni, 

et al. (1995), Jackson,et al. (2004) and Kogan (1997), 

respectively. 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                     (1) 

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛
                                                 (2) 

VCI = (NDVI - NDVImin) ∕ (NDVImax - NDVImin)        (3) 

where NDVI is Normalized Difference Vegetation 

Index, NDMI is Normalized Difference Moisture Index, 

and VCI is Vegetation Condition Index. 

 
Figure 2: Overall Methodology (framework) used for drought vulnerability study of Eerer Sub-basin 

Table 1: Sources of data 

Data set Year Scale Data type Data source 

Satellite  

image 

2015, 2016, 

2018, 2020 
10×10m Raster format 

http://earthexplorer.usgs.gov/ 

 

DEM  12.5×12.5m Raster format https://www.asf.alaska.edu 

GPS  2022 
Point       

measurement 

Different LULC classes 

& drought vulnerable 

areas 

Field Survey 

Population  
Projected  

(2014 – 2017) 
- Number CSA., 2013 
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To calculate Land surface temperature (LTS), the 

following intermediate steps, were performed (Valor & 

Caselles, 1996; Artis & Carnahan, 1982; Chander et al., 

2009):   

1. Digital Numbers (DN) were converted to spectral 

radiance using:   

Lk = ML x QCAL +AL                                             (4) 

where ML and AL are sensor-specific calibration 

coefficients 

2. Spectral radiance was transformed into brightness 

temperature (TB) in degree Celsius:    

𝑇𝐵 =  
𝐾2

𝑙𝑛(
𝐾1

𝐿𝑘
+1)

− 273.15                                     (5) 

3. Proportion of Vegetation (PV) was estimated as: 

𝑃𝑉 = [
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
]

2
                                    (6) 

4. Land Surface Emissivity was estimated using:  

LSE = 0.004 x PV + 0.986                                      (7) 

5. Finally LST was computed as:  

𝐿𝑆𝑇 =
𝐵𝑇

1+𝑊×(
𝐵𝑇

14380
)ln (𝐸)

                                           (8)  

Additionally, VHI, a combined indicator of 

moisture and temperature, was calculated as:  

VHI = a*VCI + (1- a)*TCI                                      (9) 

where 'a' is a coefficient that determines the relative 

contributions of each index (Kogan, 1997). 

2.4 AHP and GIS model 

A pairwise comparision matrix of relevant variables 

was created, and the AHP methods were then 

incorporated into GIS model. In AHP, the hierarchy is 

ordered with the overarching objective at the top, and 

the criteria, sub-criteria, and choices are listed in 

decreasing order. The user uses a comparison matrix at 

each level, comparing pairs of criteria to employ the 

comparative judgment principle. Using a scale of 1 (in 

difference) to 9 (strong preference), the parameters are 

compared pairwise (Table 2). Once the matrix of 

pairwise contrasts has been built using a comparative 

scale proposed by Saaty (2008), it is possible to evaluate 

the relative importance of each of the possibilities in 

terms of the specific standard. A composite weight was 

assigned to each alternative based on preferences 

established by a matrix of criteria or sub-criteria. 

Typically, the choice that was ultimately selected is the 

one that garnered the highest overall rating. 

The importance of each criterion in evaluating 

drought threats was carefully considered in determining 

the weightings to be applied to each drought related 

factors.The eigenvector method was employed to 

calculate weights, with the largest eigenvalue serving as 

a critical component of this process.The primary input 

for determining the weightings was the pairwise 

comparison matrix of n criteria, constructed using 

Saaty's significance scale (Table 2). 

 

Table 2: Intensity of Importance scale as suggested by (Saaty, 2008) 

Intensity of 

importance 
Definition Explanation 

1 Parameters are of equal importance Two parameters contribute equally to the objective 

3 
The parameter I is of more importance 

compared to parameter J 
Experience and judgment strongly favor I over J 

5 
Essential or strong importance of I 

compared to J 
Experience and judgment strongly favor I over J 

7 Very strong or demonstrated importance 
Criteria I is very strongly favoured over J and its 

dominance is demonstrated in practice 

9 Absolute importance 
The evidence favoring, I over J to the highest 

possible order of affirmation 

2,4,6,8 
Intermediate values between two adjacent 

judgments 

Judgment is not precise enough to assign values of 

1, 3, 5, 7, and 9 (compromise is needed) 
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As demonstrated by Ahamed et al. (2000), the matrix 

typically takes the form of (n * n), where each entry 

represents the relative importance of a criterion 

compared to another:   

𝐴 = [𝑎𝑖𝑗]; 𝑖, 𝑗 = 1, 2, 3, … , 𝑛                                (10) 

where 𝑎𝑖𝑗 =
𝑊𝑖

𝑊𝑗
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗                               (11) 

The matrix A generally has the property of 

reciprocity and also consistency. Mathematically,  

aij = 1/aji, and aij = aik/ajk for any i, j and k. 

Thus, multiplying Eq. (10) with the weighting factor W 

of (n * 1) size yields:  

(A - nI) x W = 0                                                  (12) 

As a judgement matrix, A's components may not be 

able to be identified with sufficient precision to meet the 

consistency required. As a result, it may be calculated 

using a set of homogeneous linear equations: where I is 

the identity matrix of (n * n). Based on matrix theory, 

the system of equations has a simple solution if the 

comparison matrix A possesses attribute of consistency. 

A* x W* = λmax W*                                        (13) 

where W* is the associated priority vector, A* is the 

estimate of A, and λmax is the greatest eigenvalue for 

matrix A. The weightages W, which are normalized to 

unity, are produced by equation (13). 

Where elements are equal to 1, the value of each unit 

is compared using an eleven by eleven pairwise 

reference matrix of diagonals (Table 3). The other 

values in each row indicate the relative importance of 

variables compared to one another. A pairwise 

evaluation matrix, a relative weight matrix, and a 

normalized principal Eigenvector were used to rank 

each parameter. To estimate the normalized principal 

eigenvector, the total of the column’s values was 

divided by the corresponding relative weight matrix. 

Subsequently, normalized principal eigenvector was 

created by averaging the values in each row. Using this 

eigenvector, the percentages outcomes for each thematic 

layer were then determined. 

The valuation of the consistency through pairwise 

evaluations is to assign the Consistency Ratio, CR (Al-

Shabeeb et al., 2016). This step involves:  

Step 1: Establishing decision hierarchy 

A prioritization technique was used to rank the 

factors according to their relevance in making the 

decision at each level of the hierarchy once the hierarchy 

had been established (Saaty, 2008). Analytical hierarchy 

structure of areas vulnerable to drought. To better 

comprehend decision to be made, standard to be applied, 

and alternatives to be assessed, important to decompose 

a structure hierarchically (Demisachew et al. 2022). 

 

Table 3: Matrix of pairwise comparisons between the chosen parameters 

Parameters NDVI VCI LST LULC VHI SMI NDMI Slope 
Population 

density 
DEM Aspect 

NDVI 1 2 2 2 3 4 5 7 8 8 9 

VCI 0.50 1 2 3 3 4 5 6 7 8 9 

LST 0.50 0.50 1 2 3 3 3 5 6 7 8 

LULC 0.50 0.33 0.50 1 2 3 3 4 4 5 7 

VHI 0.33 0.33 0.33 0.50 1 1 2 4 5 6 7 

SMI 0.25 0.25 0.33 0.33 1.00 1 1 2 3 5 5 

NDMI 0.20 0.20 0.33 0.33 0.50 1.00 1 3 5 5 6 

Slope 0.14 0.17 0.20 0.25 0.25 0.50 0.33 1 2 3 3 

Population 

density 
0.13 0.14 0.17 0.25 0.20 0.33 0.20 0.50 1 3 4 

DEM 0.13 0.13 0.14 0.20 0.17 0.20 0.20 0.33 0.33 1 1 

Aspect 0.11 0.11 0.13 0.14 0.14 0.20 0.17 0.33 0.25 1 1 

Total 3.79 5.16 7.13 10.01 14.26 18.23 20.90 33.17 41.58 52.00 60.00 



Asfaw Kebede et al.                                                                                                   Ethiop. J. Sci. Sustain. Dev., Vol. 12(1), 2025 

71 
  

Step 2: Computing the consistency index (CI) 

CI =
λmax−n

n−1
                                                      (14) 

where n is the number of components in the pair-wise 

comparison matrix and λmax is its Eigen value. 

Step 3: Calculating CR 

CR =
CI

RI
                                                         (15) 

where RI is the reciprocal matrix's consistency index, 

which was generated at random using the forced 

reciprocals on a scale of 1 to 9 (Table 4). A similar-sized 

pair-wise comparison matrix that was generated at 

random has an average consistency index. 

Table 4: Random index for consistency/ inconsistency 

check (RI) (Source: Saaty, 2008) 

N 1 2 3 4 5 

R1 0.00 0.00 0.58 0.90 1.12 

N 6 7 8 9  

R1 1.24 1.32 1.41 1.40  

Step 4: Defining the relative weight 

The AHP method uses the CR, which should be less 

than or equal to 10%, to evaluate the consistency of the 

expert judgements (Al-Shabeeb et al., 2016). All the 

indicated parameters have CR of less than 10%. Hence, 

all parameters are used as an aggregation for computing 

the weights of each parameter. 

Then, to efficiently identify potential drought hazard 

locations, a weighted overlay analysis was used. The 

eleven environmental factor maps were employed to 

create a zonation map of drought risk for the research 

area. These factors were numerically rated on a scale 

from 1 to 5, reflecting their relative importance. Weights 

and ranks were assigned to the class within the factors, 

with higher values indicating a greater impact on 

drought likelihood. Using the weighted overlay 

technique in GIS, the factors were integrated as thematic 

layers to produce the drought hazard zone map. The 

drought map was created after multiplying all the 

parameters by their respective weights (eqn. 16). The 

resulting drought map categorized the area into five 

zones of very high, high, medium, low and no drought. 

𝐷 = ∑ 𝑇𝑖 ∗ 𝑑𝑖
𝑛
𝑖=1                                                  (16) 

where Ti stands for each parameter's weights times the 

drought parameters (di). 

2.5 Stakeholder perspectives on drought 

vulnerable areas using NbS 

A qualitative approach was adopted to examine the 

stakeholders’ perspectives on drought prone areas using 

NbS, participatory procedures, and collaborative 

planning techniques, utilizing a Living Labs approach 

(Atteslander, 2003). Living Labs serve as open 

innovation ecosystem centered on user through co-

creation, integrating research and innovation in real life 

settings. By focusing on people, living labs adapt 

innovative concepts to local contexts, cultures, and 

aspirations, fascinating the co-creation of tailored 

solutions.  

To collect in-depth qualitative data, this study 

employed FGD with a small, diverse group of 

participants (Marshall & Rossman, 1998). A systematic 

stakeholder mapping methodology (Zingraff-Hamed, et 

al., 2020) was used to identify potential participants 

based on available documents, local protocols, and site-

specific information. Stakeholder selection followed the 

principle of maximum contrasts, depending on ground 

theory (Strauss & Corbin, 1990), to address diverse 

perspectives, attitudes, and opinions. Criteria for 

inclusion encompassed socio-demographic diversity, 

professional backgrounds, and viewpoints. Stakeholders 

were categorized into groups based on collected data, 

with adjustments made during the process to replace 

non-responsive or less relevant participants (Strout, et 

al., 2021).  

Local facilitators’ teams managed stakeholder 

processes, evaluating roles across co-design, co-

implementation, and co-monitoring/evaluation phases. 

Using interest-influence matrices and three-dimensional 

power-influence-attitude grids (Reed, et al., 2009; 

Dejene et al., 2023), facilitators analyzed stakeholder 

interrelations and their susceptibility to drought risks. 

Additional considerations included stakeholders' 

potential contributions to NbS and their involvement in 

decision-making for identifying viable drought risk 

mitigation strategies. 

Moreover, based on the results of the stakeholder 

mapping, participants at the various sites around the 

sub-basin were selected for FGD in iterative approach. 
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The FGD panel included at least one person from each 

of the following fields: industry, academia, politics, the 

government, and civil society (represented, for instance, 

by local NGOs). Murray-Webster & Simon (2006) 

deemed that the respondents' backgrounds and socio-

demographic characteristics across all case locations 

should encompass a wide variety of perspectives, varied 

views, opinions, and backgrounds. However, in this 

study, not all of the individuals who were initially 

selected could be questioned because some declined the 

invitation to FGD or said they could not participate at 

the scheduled time. Thus, they were replaced. Phone and 

video conversations were also used for the FGDs. When 

FGD participants declined to be recorded, notes were 

taken. For the evaluation, audio recordings of FGDs 

were transcribed and interpreted into English from the 

local language, both Amharic and Afaan Oromo. The 

texts were then evaluated, condensed, and organized 

under or into essential assertions and relative frequency 

(Hunziker, 2000). 

Spatial planning and management strategies must 

consider the potential of NbS to mitigate drought in 

valuable areas and provide sustainable solutions 

(Mayring, 2010). Thus, following the development of 

the drought value map, a potential drought risk 

management strategy was explored using data collected 

through the FGD with the stakeholders. To achieve this, 

the Living Labs methodology was adopted (Atteslander, 

2003). This approach is crucial for analyzing 

stakeholders’ perspectives on drought risk reduction 

through NbS, employing comprehensive participatory 

procedures and extensive collaborative planning 

strategies. 

NbS for drought management were examined using 

key informant (KI) interviews, FGD, and field 

observations focused on pastoralists' variability and 

coping mechanisms. The study area was stratified into 

high and low draught vulnerable areas. Four districts 

were selected, representing eight villages - four from 

each of the high and low drought-vulnerable areas. Key 

informants were chosen from local residents with 

extensive knowledge of the history of the study area, 

firsthand experience with drought occurrence, and 

familiarity with coping mechanisms. Six individuals 

from each district participated in the key informants 

interviews. Additionally, each district conducted three 

separate FGDs, with eight representatives from each 

social group (men, women, and youth) in each 

discussion. The FGDs facilitated idea exchanges and 

provided deeper insights into NbS adaptation and 

coping mechanisms. Field observations were conducted 

to validate the data collected, focusing on residences, 

farms, grazing areas, and other local settings. 

Socioeconomic characteristics along with various NbS 

drought adaptation and coping mechanisms, were 

compared across the two strata to identify differences 

and trends.  

3. Results and Discussion 

3.1 Mapping of the key variables 

3.1.1 LULC, slope, aspect and elevation  

DEM that captures landscapes and ground surface 

topography is crucial to address challenges, including 

the consequences of climate change, disaster response, 

environmental management, and water security. Using 

DEM, the study showed that the south part largely 

consists of a low-elevation zone, whereas the north 

mainly consists of high elevations (Figure 3a). 

Slope is a key indicator of drought risk. Higher 

topographic areas experience significantly greater water 

drainage compared to their neighboring lower areas, 

making droughts less likely in lower-sloping terrain than 

on steep plains (Ferreira et al., 2020). Descriptive 

statistics for slope show a mean of 80.11 and standard 

deviation of 28.11 with slope ranging from 0 to 89.990. 

Figure 3b shows regional variability of slope.  

The aspect, or the direction and orientation of the 

slope, influences the amount of solar radiation received, 

which impacts the hydrology of the study area. 

Variations in solar radiation affect parameters such as 

temperature, humidity, infiltration, runoff, and soil 

evaporation, which in turn influence drought 

vulnerability (Jain et al., 2015). The aspect map of the 

study area (Figure 3c) was categorized based on these 

factors, with values assigned to each class, into ten 

classes to reflect vulnerability levels. Vulnerability 

classifications for various aspect ranges were developed 

using relevant literature and local expert knowledge 

(Ekrami et al., 2016).
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: Elevation (a), Slope (b), Aspect (c), and LULC (d) 

In addition to topography, societal factors, land use 

and management practices, and government agricultural 

practices contribute dynamically to drought 

susceptibility. Due to its variable nature, land use is 

recognized as an exposure factor for the study. The 

dominant land uses in the study area are shrubs 

(63.74%), crops (18.62%), constructed area (9.45%), 

grass (4.25%), trees (3.37%), bare land (0.35%), flooded 

vegetation (0.16%), and water (0.06%). Among the 

eight identified land-use categories (Figure 3d), 

agriculture is the most drought-sensitive due to its 

dependence on water, followed by urban use. Therefore, 

the agriculture sector received the highest numerical 

weight value in the drought vulnerability analysis. 

3.1.2 Population density, Land Surface Temperature, 

Normalized Difference Vegetation Index, and 

Normalized Difference Moisture Index 

Population density significantly impacts water usage, 

making water demand and consumption major 

challenges in densely populated areas. Regions with 

higher population densities are consequently more 
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vulnerable to drought than those with lower population 

densities. This research highlights the critical role of 

population density, as it directly correlates with 

increasing water demand and intensifies pressure on 

water resources as population grow. As population 

density rises, it exacerbates stress on water sup-ply 

systems, thereby increasing the likelihood of drought. 

The Northern part of the sub-basin exhibited a very high 

population density, resulting in a greater risk of water 

scarcity and water stress due to rapid population growth 

(Figure 4a). Higher population density and water stress 

in this region are strongly associated with socio-

economic drought, as dense populations exacerbate 

resource demands. 

To analyze water and energy budgets at the surface-

atmosphere interface, Land Surface Temperature (LST), 

derived from TIR band data, provides critical insights 

into the state of the terrestrial surface (Bennie et al., 

2008). LST (Figure 4b) serves as a key indicator for 

measuring evapotranspiration, vegetation water stress, 

soil moisture, and thermal inertia (Gutman, 1990). 

Additionally, low values of NDVI indicate stressed 

plants, particularly in semiarid and arid environments, 

making NDVI a valuable response variable for detecting 

and quantifying drought disturbance (Moran et al., 

1994). In this study, plant cover was mapped using a 

Landsat 8 ETM+ image and the NDVI index (Figure 

4c). The NDVI, widely used to assess vegetation health, 

measure photosynthetic activity or “greenness” by 

converting the red and near-infrared bands images into 

a vegetation index. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Population density (a), Land Surface Temperature (b), Normalized Difference Vegetation Index, NDVI 

(c), and Normalized Difference moisture Index, NDMI (d)  
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The NDVI was calculated using each red and near-

infrared wavelength band. The NDVI scale ranges from 

-1 to +1, with values +1 indicating healthy vegetation 

(Myneni et al., 1995) and values near -1 indicating 

saturated water. For this study, only the vegetation cover 

was considered (Myneni et al., 1995). During drought, 

vegetative canopies often experience water stress, 

significantly affecting plant growth, particularly in 

agricultural areas. The stress can lead to crop failures or 

reduced yields. However, early diagnosis of plant water 

stress using NDVI can help mitigate these impacts.  

The NDMI closely correlate with plant water content 

(Figure 4d) and thus, serves as an excellent indicator of 

plant water stress. Studies have confirmed its 

effectiveness for drought monitoring and early warning 

(Tucker & Choudhury, 1987). NDMI is sensitive to 

changes in liquid water content and the spongy 

mesophyll in plant canopies, as it is calculated using 

near-infrared (NIR) and shortwave infrared (SWIR) 

reflectance (UNDRR, 2021). This makes it a valuable 

tool for identifying and addressing drought impacts on 

vegetation. 

3.1.3 Vegetation condition index, vegetation health 

index and soil moisture index  

VCI measures variations in the red and near-infrared 

bands reflected in the spongy mesophyll of the 

vegetative canopy, driven by chlorophyll absorption and 

reflection. VCI outperformed other indices, such as 

NDVI or NDMI alone, in detecting drought conditions 

across Spain's diverse vegetation (Gu et al. (2008). VCI 

was developed by Kogan (1997) and scales the NDVI 

between its minimum and maximum values for each 

pixel over a significant temporal record beginning in 

1981. The current NDVI value is compared with the 

range of historical NDVI values recorded during the 

same period in prior years. The VCI is expressed as a 

percentages where the observed value falls within the 

historical extremes, with lower values signifying poor 

vegetation conditions and higher values indicating good 

conditions. The composite time can represent periods 

such as a decade, a growth season, a week, a month, or 

an entire year, with an average NDVI of zero. By 

normalizing the NDVI, the VCI reduces the influence of 

spatial and temporal variability in phenology across 

different land cover types and climates, while 

emphasizing relative changes in local NDVI signals 

over time. This metric is widely used to monitor drought 

and assess vegetation conditions (Figure 5a).  

On the other hand, VHI measures drought severity by 

combining the VCI and TCI. VHI reflects the impact of 

vegetation health and temperature on plant conditions. 

The TCI is calculated by comparing current temperature 

to long-term maximum and minimum temperatures, 

based on the premise that higher temperatures often 

worsen vegetative conditions. A lower VHI indicates 

poor vegetation health and increased stress from high 

temperatures, which collectively point to dryness over a 

prolonged period (Figure. 5b). Additionally, the SMI is 

used to evaluate the soil moisture status, serving as an 

excellent indicator of drought during dry conditions 

(Figure 5c).  

3.2 Draught vulnerability map 

The study found that 30.05% of Erer Sub-basin’s 

land area falls into the intermediate drought class, while 

the other categories are distributed as extreme drought 

(19.1%), almost no drought (20%), low drought 

vulnerability (16.50%), and extremely severe drought 

(13.60%) (Figure 6). Areas with very high and high 

drought vulnerability are predominantly located in the 

Fik and Midhagatola districts. High to very high drought 

sensitivity was observed in regions characterized by 

steep slopes, moderate elevation, high to very high 

NDVI, and moderate to high land surface temperature. 

These areas have moderate population densities and a 

significant presence of built-up zones. Similar findings 

were reported globally (Palchaudhuri and Biswas, 2016; 

Gao, 1996). Beyond the risk of drought, the lower sub-

basin area faces additional significant challenges, 

including soil dryness, declining groundwater tables, 

soil erosion, water shortages, deforestation, 

environmental imbalances, and agricultural failure. 

 Eerer sub-basin is situated at the confluence of the 

Wabe Shebelle river plain and its basin, a location 

shaped by unique lithological conditions that contribute 

to persistent challenges. The lower sub-basin area spans 

the Midhagatola, Babile, Fadis and Fik districts (Figure 

6), regions characterized by arid climate and acute water 

scarcity. This area’s undulating hard rock terrain is 

covered by lateritic soil, which has poor water-holding 

capacity and low fertility. These unfavorable physical 

conditions severely hinder agricultural productivity and 
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other activities, leaving the population perpetually 

vulnerable to agricultural and hydrological drought. 

During the rainy season, the gully erosion exacerbates 

these challenges as loose debris accumulates in the 

riverbeds, causing significant flooding and economic 

loss in the lower basin. 

3.3 Stakeholder perceptions and NbS  

Eerer sub-basin experiences both drought and 

flooding annually, a pattern confirmed during FGD with 

stakeholders. In an attempt to mitigate these issues, the 

government introduced water harvesting structures 

across Midhagatola, Babile, Fadis, and Fik districts. The 

structures were designed to store water during the rainy 

season and channeled for domestic and agricultural 

usage in the dry season. Additionally, they aimed to 

reduce downstream flooding by capturing excess water 

of wet season. However, these interventions have not 

successfully mitigated the hydro-meteorological 

hazards. The affected districts continue to face 

significant environmental and financial risk. Despite 

numerous strategies, and concepts applied over the 

years, the challenges remain unresolved. Adopting NbS 

offers the most sustainable approach to address these 

persistent issues by leveraging natural ecosystems to 

enhance the region's resilience and adaptive capacity. 

The crop production system in the study area is 

highly sensitive to impact of climate change (Renza et 

al., 2010; Ghosh et al., 2020). Consequently, an 

increasing number of households are expected to face 

food insecurity in the future. Climate change poses a 

significant threat to Ethiopia's crop productivity, as 

rising growing season temperatures and the high 

variable rainfall exacerbate drought conditions soil 

degradation, and declining soil fertility (Lemma & 

Wondimagegn, 2014; Shukla et al., 2021). These 

challenges underscore the importance of implementing 

NbS to protect the agricultural sector.  

 

 
(a) 

 

 
(c) 

 

(b) 

Figure 5: Vegetation Condition Index (a), Vegetation Health Index (b), and Soil Moisture Index (c) 
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Figure 6: The study area's spatial distribution of drought (‘Woreda’ is local word for district) 

NbS provides sustainable ecological approaches to 

environmental challenges. In Ethiopia's crop production 

system, NbS strategies focus on regulating temperature, 

maintaining soil moisture, and enhancing nitrogen 

levels as climate change adaptation measures. Ethiopian 

smallholder farmers have adopted NbS strategies to 

mitigate drought in vulnerable areas (Tamiru & Fekadu, 

2019; Abrham et al., 2017; Tekeste, 2021). These 

practices include improved crop varieties, use of 

inorganic fertilizers, conservation agriculture, soil and 

water management (for example., in-situ water 

harvesting and soil conservation techniques), 

agroforestry, adjusted planting dates, organic fertilizers, 

supplementary irrigation and farmer-led forest 

landscape regeneration (Abrham et al., 2017; Hana & 

Edom, 2022; Fiker et al., 2021; Hou Jones et al., 2021).   

NbS strategies for drought mitigation, such as 

farmyard agroforestry, soil and water conservation, and 

organic fertilizers, help sustainably increase crop 

productivity by preserving soil moisture and enhancing 

essential soil nutrients. Additionally, water harvesting 

has been identified as one of the most crucial methods 

of addressing water shortages in drought-prone regions 

(Renza et al., 2010). In East Hararghe, Ethiopia, 

smallholder farmers who apply climate change 

adaptation measures, such as altering sowing dates and 

conserving water, experience better food secure 

compared to those who do not.  

The FGD with smallholder farmers confirmed the 

widespread use of nature-based practices, including soil 

and water conservation, farmer-level water harvesting, 

and drought resistant crop varieties. These practices 

align with the analysis of drought vulnerability in the 

sub-basin, which indicates medium to high drought 

levels. Farmers noted that implementing NbS will help 

alleviate the impacts of drought, contributing to more 

sustainable crop production and enhanced resilience in 

the region. 

4. Conclusions  

This study characterized drought vulnerable area 

Eerer Sub-basin, and then proposed long-term nature-

based solution. AHP was employed to assess the region, 

integrating multi-parameter analysis with site-specific 

variables. The findings revealed that the sub-basin is 

highly susceptible to drought, with risk factors including 

low vegetation cover, high population density, steep 

slopes, and intermediate elevations. The middle sub-

basin faces severe flooding during the rainy season, 

while the downstream area remains at significant 
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drought risk, resulting in substantial economic losses. A 

long-term strategy is essential to protect the sub-basin 

by enhancing adaptive capability through carefully 

selected NbS. These solutions, combined with blue 

infrastructure for drought risk reduction, offer effective 

and robust tool for building climate resilience and 

addressing future risk in the region. 

Successful drought risk reduction hinges on 

understanding ecological changes driven by climate 

change, rising population, and changing land use 

patterns. To mitigate the likelihood of hydrological 

disasters in the sub-basin, the study advocates for 

stringent regulatory measures and the integration of NbS 

in densely populated areas. Additionally, leveraging 

seasonal floods for artificial recharge can help reduce 

the impact of drought and manage surface runoff. This 

research provides a foundation for identifying artificial 

recharge sites and developing strategies that enhance the 

economic and climatic resilience of the Eerer Sub-basin. 

Based on the analysis of this research, the following 

recommendations are drawn to address drought 

vulnerability and to enhance resilience in Eerer Sub-

basin.(1) Reforestation and vegetation cover 

improvement educe soil erosion, enhance water 

retention, and stabilize steep slopes; (2) soil and water 

conservation measures,  such as terracing, contour 

farming, and mulching, shall reduce water runoff, 

improve soil moisture, and promote groundwater 

recharge; (3) artificial recharge structures leverage 

seasonal floods for artificial groundwater recharge; (4) 

rainwater harvesting systems, especially in densely 

populated areas, shall reduce dependence on natural 

water sources and increase water availability during 

droughts; (5) public awareness and community 

participation in conservation and NbS initiatives, 

promote education on sustainable water management 

and the use of local knowledge. While the study utilized 

high-resolution datasets and indicators applicable to 

other regions, it emphasizes that vulnerability 

assessments must also consider the socioeconomic and 

cultural dimensions of affected com-munities for 

comprehensive risk analysis. 
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